Wiki Article
Comparison of EM simulation software
Nguồn dữ liệu từ Wikipedia, hiển thị bởi DefZone.Net
The following table lists software packages with their own article on Wikipedia that are nominal EM (electromagnetic) simulators;
| Name | License | Windows | Linux | 3D | GUI | Convergence detector | Mesher | Algorithm | Area of application |
|---|---|---|---|---|---|---|---|---|---|
| NEC | open source | Yes | Yes | Yes | In some distributions | Yes | manual | MoM | Antenna modeling, especially in Amateur Radio. Widely used as the basis for many GUI-based programs on many platforms. Version 2 is open source, but Versions 3 and 4 are commercially licensed. |
| Momentum | commercial | Yes | Yes | Partial | Yes | Yes | equidistant | MoM | For passive planar elements development, integrated into Keysight EEsof Advanced Design System. |
| Ansys HFSS | commercial | Yes | Yes | Yes | Yes | Yes | Automatic adaptive | FEM, FDTD, PO, Hybrid FEBI, MoM, and Eigenmode expansion (EME). | For antenna/filter/IC packages, Radome, RFIC, MMIC, Antenna Placement, Waveguide (radio frequency), EMI, Frequency selective surfaces (FSS), Electromagnetic metamaterials, Composite Material, RCS-Mono and Bi development. |
| XFdtd | commercial | Yes | Yes | Yes | Yes | Yes | Automatic (project optimized) | FDTD | RF and microwave antennas, components, and systems, including mobile devices. MRI coils, radar, waveguides, SAR validation. |
| AWR Axiem | commercial | Yes | Yes | Yes | Yes | Yes | Automatic, Hybrid | MoM | PCBs, multi-layer PCBs, LTCC, HTCC, on-chip passives, printed antennas. Integrated into Microwave Office. |
| AWR Analyst | commercial | Yes | Yes | Yes | Yes | Yes | Automatic and adaptive | FEM | 3D structurers (including 3D antennas), waveguides, 3D filters, PCBs, multi-layer PCBs, LTCC, HTCC, on-chip Passives, printed antennas. Integrated into Microwave Office. |
| JCMsuite | commercial | Yes | Yes | Yes | Yes | Yes | Automatic, error-controlled | FEM | Nano- and micro-photonic applications (light scattering,[1] waveguide modes,[2] optical resonances[3]). |
| QuickField | commercial and free editions | Yes | No | Partial | Yes | Yes | Automatic or Manual | FEM | General purpose for research, engineering and educational use, includes AC, DC and Transient Magnetics, Electrostatics, AC and DC Conduction, Transient Electrics, Heat Transfer and multiphysics |
| COMSOL Multiphysics | commercial | Yes | Yes | Yes | Yes | Yes | Automatic | FEM, MoM, BPM, ray tracing | General purpose |
| FEKO | commercial | Yes | Yes | Yes | Yes | Yes | Automatic or manual; adaptive | MoM, FEM FDTD MLFMM PO RL-GO UTD | For antenna analysis, antenna placement, windscreen antennas, microstrip circuits, waveguide structures, radomes, EMI, cable coupling, FSS, metamaterials, periodic structures, RFID |
| Elmer FEM | open source (GPL) | Yes | Yes | Yes | Yes | Yes | manual, or can import other mesh formats | FEM | General purpose, includes 2D and 3D magnetics solvers, both static and harmonic. 3D solver is based on the Whitney AV formulation of Maxwell's equations. |
| VSimEM | Commercial | Yes | Yes | Yes | Yes | Yes | Automatic, variable mesh | FDTD, PIC, finite volume | Simulating electromagnetics, and electrostatics in complex dielectric and metallic environments. Phased array antenna systems, radar equipment, and photonics. |
| Meep | open source (GPL) | No | Yes | Yes | No | Yes | manual | FDTD, FDFD | Optics and photonics (nanophotonics, photonic crystals, plasmonics, silicon photonics, metamaterials) |
| CST Studio Suite | commercial | Yes | Yes | Yes | Yes | Yes | Automatic, adaptive | FDTD/FIT, FEM, MLFMM, MoM, SBR, PIC | General purpose – statics, low-frequency, microwaves and RF, terahertz, photonics, particle accelerators, electronics |
| MPB | open source (GPL) | No | Yes | Yes | No | Yes | manual | PWEM | For band diagram and modal analysis of periodic structures (photonic crystals and metamaterials) |
References
[edit]- ^ Hoffmann, J.; et al. (2009). Bosse, Harald; Bodermann, Bernd; Silver, Richard M (eds.). "Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas". Proc. SPIE. Modeling Aspects in Optical Metrology II. 7390: 73900J. arXiv:0907.3570. Bibcode:2009SPIE.7390E..0JH. doi:10.1117/12.828036. S2CID 54741011.
- ^ Wong, G. K. L.; et al. (2012). "Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber". Science. 337 (6093): 446–449. Bibcode:2012Sci...337..446W. doi:10.1126/science.1223824. PMID 22837523. S2CID 206542221.
- ^ Maes, B.; et al. (2013). "Simulations of high-Q optical nanocavities with a gradual 1D bandgap". Opt. Express. 21 (6): 6794–806. Bibcode:2013OExpr..21.6794M. doi:10.1364/OE.21.006794. hdl:1854/LU-4243856. PMID 23546062.