Optogenetika (van Grieksoptikós, d.i. sigbaar, waargenome) is 'n biologiese tegniek wat lig aanwend om selle in lewende weefsel, tipies neurone wat geneties gemodifiseer word om uitdrukking te gee aan ligsensitiewe ioonkanale, te beheer. Dit is 'n metode van neuromodulasie wat in neurowetenskap gebruik word, wat optiese en genetiese tegnieke kombineer om die aktiwiteite van indiwiduele neurone in vivo te moniteer en beheer — selfs in vrylik bewegende diere — en wat hierdie gemanupuleerde effekte deurlopend kan registreer.[1]
Die sleutelreagente van optogenetika is ligsensitiewe proteïene. Neuronale beheer word bewerkstellig deur die gebruik van optogenetiese aktuatore soos kanaalrhodopsien (ligsensitiewe ioonkanale), halorhodopsien (ioonpomp) en mikrobiese oftewel archaerhodopsien, terwyl die optiese waarneming van neuronale aktiwiteit deur optogenetiese sensore vir kalsium (GCaMP), vesikulêre vrystelling (sinaptopHluorien), neurosenders (GluSnFRs), of membraanspanning (ASAP1) gefasiliteer word.[2][3]
Beheer en effekbepaling is beperk tot die geneties gedefinieerde neurone, en word ruimtelik-temporaal deur lig bewerkstellig. Dit word uitgevoer deur geen-ekspressie van ligsensitiewe ioonkanale, ioonpompe of lig-geaktiveerde ensieme wat op die teikenselle inwerk. Lig-geaktiveerde ensieme en transskripsiefaktore fasiliteer op enkelselvlak presiese beheer oor biochemiese seinweë.[4] In stelselneurowetenskap is die vermoë om aktiwiteitsbeheer te implementeer oor 'n geneties-gedefinieerde stel neurone aangewend om hul bydrae tot besluitneming,[5] leervaardigheid,[6] vreesgeheue,[7] paringsgedrag[8] en verslawing[9] te verstaan. In 'n eerste mediese toepassing van optogenetiese tegnologie is die sig van 'n blinde pasiënt deels herstel.[10] In 'n breër opsig sluit optogenetika ook metodes in wat sellulêre aktiwiteit meet deur middel van geneties geënkodeerde indikatore.
Die vroegste benaderings tot optogenetiese beheer is deur Boris Zemelman en Gero Miesenböck ontwerp en toegepas[11][12] by die Sloan-Kettering-kankersentrum in New York Stad, en Dirk Trauner, Richard Kramer en Ehud Isacoff by die Universiteit van Kalifornië, Berkeley. Hierdie metodes het wel ligsensitiwiteit verleen, maar ander laboratoria het weens die etlike essensiële komponente van hierdie benaderings nie opvolgwerk gedoen nie. 'n Daaropvolgende enkelkomponent-benadering wat mikrobiese opsiengene benut, is in 2005 van stapel gestuur en het wyd byval gevind. Optogenetika is bekend vir die hoë hoek- of ruimtelike resolusie sowel as die temporale resolusie wat dit bied om die aktiwiteit van spesifieke soorte neurone te verander en sodoende 'n subjek se gedrag te beheer.
In 2010 is optogenetika uit al die studievelde in wetenskap en ingenieurswese gekies as die "metode van die jaar" deur die interdisiplinêre navorsingsjoernaal Nature Methods.[13] Terseldertyd is optogenetika uitgelig in 'n artikel oor deurbrake van die dekade in die akademiese navorsingsjoernaal Science.[14] Hierdie joernale het ook verwysings na 'n onlangse algemeen beskikbare video (Metode van die jaar video) van algemene belang ingesluit, benewens tekstuele (SciAm) opsommings van optogenetika.
↑Mancuso, J. J.; Kim, J.; Lee, S.; Tsuda, S.; Chow, N. B. H.; Augustine, G. J. (2010). "Optogenetic probing of functional brain circuitry". Experimental Physiology. 96 (1): 26–33. doi:10.1113/expphysiol.2010.055731. PMID21056968.
↑Zemelman, B. V.; Lee, G. A.; Ng, M.; Miesenböck, G. (2002). "Selective photostimulation of genetically chARGed neurons". Neuron. 33 (1): 15–22. doi:10.1016/S0896-6273(01)00574-8. PMID11779476.