Dä Artikel beschribt dr antik Mathematiker. Für anderi Bedütige lueg under Archimedes (Begriffsklärung). |
Dr Archimedes vo Syrakus (altgriech. ᾿Αρχιμήδης; * um 287 v. Chr. vermuetlig z Syrakus uf Sizilie; † 212 v. Chr. z Syrakus) isch en antike griechische Mathematiker, Füüsiker und Ääscheniöör gsi. Er gältet as äine vo de bedütendste Mathematiker vo dr Antike. Sini Wärk si au no im 16. und 17. Joorhundert vo Bedütig gsi, wo mä die hööcheri Analysis het afo entwiggle.
Über s Lääbe vom Archimedes wäiss mä wenig und e Hufe vo däm gältet as Legände.
Dr Archimedes isch öbbe 287 vor dr Zitewändi[1] in dr Haafestadt Syrakus uf d Wält cho. Er isch dr Soon vom Pheidias[2] gsi, eme Astronom am Hoof vom Hieron II. vo Syrakus. Mit em Hieron und sim Soon und Mitregänt Gelon II. isch er befründet und villicht au verwandt gsi.[3]
Lengeri Zit isch er z Alexandria gsi und het dort d Mathematiker Konon, Dositheos und Eratosthenes kenne gleert und het spööter mit ene korrespondiert.
Zrugg z Syrakus het er sich mit Mathematik und braktischer Füsik (Mechanik) beschäfdigt. Sini Wurfmaschine si bi dr Verdäidigung vo Syrakus wääred dr römische Belaagerig im Zwäite Punische Chrieg iigsetzt worde. Wo dr römisch Fäldheer M. Claudius Marcellus noch ere Belaagerig vo drei Joor 212 vor dr Zitewändi Syrakus erooberet het, häi röömischi Soldate dr Archimedes umbrocht, was dr Marcellus seer beduurt het. Dr Plutarch überliiferet in sinere Biografii vom Marcellus[4] meereri Versione. Äini verzelt, ass dr Archimedes grad mit eme mathematische Bewiis beschäftigt gsi sig und eme Soldat gsäit häig, er söll en in Rue loo und dä häig en umbrocht. Was dr Archimedes söll gsäit haa: Noli turbare circulos meos (lateinisch für: Stör mini Kräis nit!) isch sprichwörtlig worde.[1]
Noch em Plutarch (Marcellus 17,12) het dr Archimedes sich im Testamänt e Graab mit dr Daarstellig von ere Chugele und eme Zylinder druf gwünscht, wil er offesichtlig uf si Abhandlig „perì sphaíras kaì kylíndrou“ (Über Chugele und Zylinder), bsundrigs stolz gsi isch. Dr Cicero verzelt in de Tuskulanische Gsprööch, ass er s Graab gsuecht het, won er Quästor z Sizilie gsi isch (75. v. d. Z.), und es sig vo Gstrüpp überwuecheret gsi.[5]
E Biografii, wo si Fründ Heracleides gschriibe het, existiert nüme.
Die erhaltene Hauptschrifte si:
Drzue chömme:
D Räijefolg vo de Hauptschrifte bis zur Sandrächnig entspricht dr chronologische Räijefolg, wie si dr Thomas Heath aagee het.[6] D Kwadratur vo dr Parable isch zwüsche de Büecher 1 und 2 vom Gliichgwicht vo ebene Flechene iigordnet worde und Über die Methode zwüsche Gleichgewicht ebener Flächen, Buech 2, und Über Kugel und Zylinder. An dr Chronologii het s aber au Kritik gee.[7]
In dr Kwadratur vo dr Parable wird dr Dood churz vorhäär vo sim Fründs Konon erwäänt, so dass mä die Schrift um 240 v. d. Z. cha datiere.[8] Noch dr erwäänte relative Datierig si die mäiste Wärk vom Archimedes erst noch däm entstande. DR Archimedes het gsäit, ass s Buech über d Spirale vili Joor noch em Dood vom Konon gschriibe worde isch, so dass es noch em Ivo Schneider uf öbbe 230 v. d. Z. sött datiert wärde. Dr Schneider ordnet d Methodeleer Ändi 220er Joor ii und die Schwümmende Körper as letschts Wärk in die letschte acht Lääbensjoor, aber woorschinlig vor 216 v. d. Z. wägen em Chrieg wo denn usbroche isch.
Es git Hiiwiis uf e baar Schrifte, wo verloore gange si, zum Bischbil über Polyeder und über Hebel, wo d Pappos erwäant, über d Daarstellig vo Zaale, wo dr Archimedes in sim Sandrächner drüber reedet, und über Spiegel, Catoptrica, wo dr Theon vo Alexandria drvo verzelt. Wil die mechanische Schrifte vom Archimedes (Gleichgewicht ebener Flächen, Quadratur der Parabel) und wil s binem meereri Hiiwiis drug git dänggt mä, ass Däil vo sinere Mechanik verloore gange si, und dr A. G. Drachmann het brobiert die z rekonstruiere.[9][10] Die mechanische Schrifte, wo däilwiis rekonstruiert si, stöön chronologisch am Aafang vo de Wärk vom Archimedes.
Au vo Schrifte in ere arabische Übersetzig, wo verlore gange si, wäiss mä. Im Büecherkatalog vom Ibn al-Nadim isch e Buech über s Parallelebostulat ufgfüert, wo möögligerwiis d Behandlig vom Thema bim Thabit Ibn Qurra beiiflusst het.[11] Vom Thabit Ibn Qurra stammt au d Übersetzig von ere Abhandlig vom Archimedes über d Konstrukzioon vom reguläre Heptagon, und die git s no.[12] D Konstrukzioon isch nid vollständig, si isch aber vom Abu Sahl al-Quhi vollständig gmacht worde.
Dr Archimedes het d Mathematik und d Füsik im gliiche Maass beriicheret. Iim zu Eere het men eme Mondkrater uf em Mare Imbrium Archimedes gsäit.
Mä het em au d Erfindig und Kombinazioon vo verschiidene Maschineelimänt (wie Schruube, Säilzüüg mit Wällereeder, Fläschezüüg und Zaanreeder) zuegschriibe, und die het er au braktisch demonstriert. Aber noch em Plutarch het er s abstrakte Dänke vorzooge und uf die braktische Aawändige und d Arbet vom Ääscheniöör aabegluegt, au wenn er im Ufdraag vo sim Köönig Hieron dra gschafft het. Wäge däm het er au käi Abhandlig über braktischi Erfindige hinderloo. Sini Schrifte über d Mechanik und d Hydrostatik si noch em Vorbild vo dr Geometrii sträng axiomatisch ufbaut.
Dr Archimedes het d Heebelgsetz in sinere Schrift Über das Gleichgewicht ebener Flächen formuliert und mit deene die theoretischi Grundlaag für die spööteri Entwicklig vo dr Mechanik gläit. Är sälber het us em Heebelgsetz scho die wüsseschaftlige Grundlaage vo dr Statik für statisch bestimmti Süstem usgarbäitet. Dr Heebel sälber isch scho in eltere griechische Schrifte us dr Schuel vom Aristoteles beschriibe.[13]
Dr Archimedes häig wie scho dr Pappos und anderi gsäit: „Gib mr e Punkt, won i druf cha stoo, und i lüpf dr d Wält us de Angle“. Vo doo chunnt dr Begriff vom archimedische Punkt. Dr Plutarch verzelt, ass won er daas emol zum Hieron gsäit häig, dä e braktische Bewiis verlangt häig. Dr Archimedes häig denn Fläschezüüg und Säilwinde iigsetzt, so dass en äinzige Maa e groosses, voll beladnigs Schiff het chönne in Beweegig setze[14].
Noch em Vitruv[15] het dr Archimedes dr Gold-Ghalt von ere Chroone sölle brüefe, wo dr Herrscher Hieron II. de Götter gweiht het, ooni si z beschäädige. Dr Köönig het dr Verdacht ghaa, ass en dr Goldschmiid betroge het. Zum das usefinde, het dr Archimedes zerst d Chroone und denn e Goldbare (und au no e Silberbare), wo genauso schweer wie d Chroone gsi isch, in e volle Wasserbhälter daucht und gmässe, wievil Wasser uuseglofe isch. D Chroone het mee Wasser verdrängt as dr Goldbare. Eso isch bewiise gsi, ass d Chroone e chliiners spezifischs Gwicht gha het as d Goldbare und dorum nit ganz vo Gold gsi isch. Dr Legände nooch het dr Archimedes s Archimedische Brinzip bim Baade entdeckt. Us em Baad, wo bis an Rand voll gsi isch, sig d Wassermängi useglofe, won er mit sim Körper verdrängt het, won er ins Baad iinegstiige isch. Er sig glücklig über si Entdeckig gsi und sig blut uf d Strooss glofe und häig „Heureka!“ (altgriechisch: εὕρηκα /hɛːǔ̯rɛːka/, „I ha s gfunde!“) grüeft. D Anekdote wien er dr Goldghalt vo dr Chroone vom Hieron dur d Verdrängig vo Wasser brüeft het, isch aber kritisiert worde – mit de Middel won em zur Verfüegig gstande sige, weer das schweer z mache gsi und sig woorschinlig e Legände.[16] Scho dr Galileo Galilei het 1586 vermuetet, ass dr Archimedes mit ere Woog d Gwicht under Ufdriib müess gmässe haa.[17] S Archimedische Brinzip cha mä bi jedem Körper aawände, wo schwümmt. Es isch e Daatsach wo mä bim Schiffbau muess berücksichtige.
Bi sine hüdrostatische Experimänt het er s Brinzip vo de kommunizierende Gfääss entdeckt.
Dr Archimedes het bewiise, ass sich dr Umfang vom ene Kräis zu sim Durchmässer genauso verhaltet, wie d Flechi vom Kräis zum Kwadrat vom Radius. Er het däm Verheltnis nonig π (Pi) gsäit, wie s hüte häisst, het aber en Aaläitig gee, wie mä sich zum Verheltnis cha nööchere bis zu irgend ere hooche Gnauigkäit. Das isch woorschinlig s eltiste numerische Verfaare in dr Gschicht. Mit sine Überleegige über d Berächnig vo Fleche und Volume (u. a. mit ere exakte Kwadratur vo dr Parable) het dr Archimedes Ideä vo dr Integralrächnig vorusgnoo, wo anderi seer vil spööter erst wider druf choo si. Er isch drbii witer gange as d Exhaustionsmethode (Usschöpfigsmethode), wo im Eudoxos vo Knidos zuegschriibe wird. Er het zum Bischbil scho e Form vom Prinzip vom Cavalieri aagwändet.
1906 het dr Johan Ludvig Heiberg (1854–1928), e dänische Filoloog und Brofässer an dr Uniwersidäät Kopehaage, z Istanbul e Manuskript gfunde, wo uf s 10. Joorhundert datiert isch. In däm isch under anderem en Abschrift vo Archimedes sinere Die Methode.[18][19]
Er verrootet din e mechanischi Methode, won er mit ere e Hufe vo sine Resultat überchoo het, bevor er sä uf e geometrisch strängi Art bewiise het. D Methode entspricht eme Wääge vo de Inhalt bzw. de Flechene, wo mä wil vergliiche, allerdings in ere geometrische Form.[20] Dr Archimedes erwäänt au en elters Verfaare vom Demokrit, wo es sich möögligerwiis drum ghandlet het, Modäll z wääge.[21]
Dr Archimedes e Zaalesüsteem entwigglet, wo uf em Stellewärt basiert gsi isch und e Basis vo ghaa het. Er het s brucht, zum astronomisch groossi Zaale (bis zur Gröössi vo 1064) mathematisch chönne fasse und das in ere Zit, wo für sini Zitgenosse e Myriade (lit. 10'000) „unändlig“ grooss gsi isch. Er het das Zaalesüsteem für d Abhandlig Über Körper, wo schwümme, und d Zaal vom Sand, au churz Sandrächner, won er em Soon vom Hieron II, em Gelon, gwidmet het. Din stoot, ass es Lüt gääb, wo dängge, ass d Zaal vom Sand unändlig grooss sig […] und ass anderi wenigstens wurde glaube, ass no nie öbber e Zaal gsäit häig, wo grösser sig ass d Zaal vom Sand.[22] Dr Archimedes reedet vom Gelon as Köönig und dorum het d Schrift noch 240 v. d. Z. müesse entstande si, wo dr Gelon Mitregänt worde isch und vor em Gelon sim Dood 216 v. d. Z..
Dr Archimedes het d Zaal vo de Sandchörner, wo alli Stränd vo dr Ärde zuedecke, abgschetzt und eso bewiise, ass die Vorstellige falsch si. Er isch sogar no witergange und het usgrächnet, wie grüüss d Zaal vo de Sandchörner müesst sii, zum s ganze Universum mit Sand ufzfülle. Dennzumol het mä sich s Universum allerdings no wääsentlich chliiner vorgstellt, nämlig as Chuugele, wo öbbe d Gröössi vo unserem Sunnesüsteem het. Noch sinere Rächnig wurde öbbe 1064 Sandchörner in e Chuugele vo deere Gröössi basse.
S archimedische Axiom isch zwar noch em Archimedes benent, aber es goot uf e Eudoxos vo Knodos zrugg, wo das Brinzip im Raame vo sinere Gröösseleer iigfüert het.
Noch em Pappos stamme die archimedische Körper vo iim.[23]
Dr Archimedes het d Technik vo sinere Zit und iiri spööteri Entwigglig maassgääblig beiiflusst, bsundrigs d Mechanik. Er sälber het alli mööglige mechanische Gräät konstruiert, nit zletscht au Chriegsmaschine.
Mä dänggt, ass dr Archimedes die sogenannti archimedischi Schruube erfunde het[24][25]. Er häig d Idee drfür überchoo, won er z Egüpte gsi isch zum studiere und dört die äifache Vorrichdige zum dr Fälder bewässere gsee het[26]. S Brinzip vo dr archimedische Schruube wird hützudags in modärne Förderaalaage, in sogenannte Schnäggeförderer iigsetzt.
Es isch mööglig ass dr Archimedes si as Schiffsbumpi entwigglet het, wil wie dr Athenäus vo Naukratis verzellt, dr Köönig Hieron iim dr Ufdraag gee het, s grösste Schiff vo dr domoolige Zit, d Syracusia, z baue.
Dr Plutarch verzelt, ass dr Archimedes Chriegsmaschine entwigglet häig und d Römer, wo si Syrakus belaageret häi, lang ufghalte häig: er häig Wurfmaschine und Katapult und Seilwinde, won e ganzes Schiff mit ere volle Laadig und Bsatzig häig chönne beweege, wemm mä am ene äinzige Säili zooge häig. Au mächtigi Grifärm, wo findligi Boot packt und aagääblig in Stück grisse häige, häige drzue ghöört.
D Chralle vom Archimedes sig e Waffe gsi, wo gege aagrifendi Flotte iigsetzt worde sig. Si sig in dr Stadtmuure vo Syrakus iibaut gsi und wäärend dr Belaagerig gege die römischi Flotte iigsetzt worde. Wie die Waffe genau funkzioniert het, isch allerdings nid klar. In alte Schrifte wird d Waffe as e Heebel mit eme groosse Hogge us Iise daargstellt.[27][28]
Dr Archimedes söll d Schiff vo de Römer sogar über groossi Distanze in Brand gsteckt haa mit Hilf vo Spiegel, wo s Liecht vo dr Sunne umglänkt und fokussiert häi. Das brichdet dr Lukian vo Samosata und spööter dr Anthemios vo Tralleis. Über das isch mee as 300 Joor ghändlet worde. Historisch understütze d Laag vo de Kwelle, Brobleem mit dr Übersetzig (pyreia isch vilmol mit Brennspiegel übersetzt worde, au wenn es nume „Aazünde“ häisst und au Brandpfiil umfasst) und d Daatsach, ass d Legände erst Joorhunderti spööter ufdaucht isch, die Gschicht nid. Füsikalischi Argumänt drgeege si d Gröössi und d Brennwiti, wo son e Spiegel wenigstens müesst gha ha, zum uf öbbe 300 Graad z choo für zum Holz überhaupt chönne aazünde. Au weer d Zit lang, wo dr gliich Fläck müesst belüüchdet wärde, bis dass er afot afo brenne. Vo dr Technik us diskutiert mä, öb e sone Spiegel dennzumol überhaupt hätt chönne gmacht wärde, und wie men en hätt chönne montiere und bediene. E modärne Kritiker vo dr Legände isch dr Pyrotechniker Dennis L. Simms gsi[29]. Mä het e baar Mol Experimänt gmacht zum luege,öb s mööglig weer. Under anderem häi Studänte vo dr Massachusetts Institute of Technology und dr University of Arizona 2005 mit 127 chliine Spiegel e Modäll von ere Schiffswand aazundet, wo 30 Meter äwagg gsi isch.[30] Dr Himmel het aber müesse ooni Wulke si und s Holz zää Minute lang bestraalt wärde. D Schlussfolgerig isch gsi, ass Wurfgschoss und Brandpfiil effektiver wäre. Es isch mööglig, ass d Gschicht as Rückschluss us dr verlorene Schrift vom Archimedes Katóptrika (Optik) entstande isch.[31]
Dr Cicero verzellt in De re publica, ass dr Marcellus zwäi mechanischi Planetarie häim uf Rom brocht het, wo dr Archimedes entwigglet het. Er brichdet au, ass scho dr Eudoxos vo Knidos und dr Thales vo Milet äänligi Gräät baut hä. En archeologische Bewiis für sonigi Instrumänt het mä spööter im Antikythera-Mechanismus entdeggt. Es isch mööglig, ass d Schrift vom Archimedes Über die Herstellung von Sphären, wo dr Pappos erwäant wo aber verloore gange isch, vom Bau vo Planetarie handlet.
Im Archimedes schribt mä au d Erfindig vom ene Odometer zue. Dr Vitruv het sone Apparat beschriibe, wo Bälleli zum Zele brucht het. Er verzelt aber nid, wär en erfunde het und schribt nume, ass er vo de Alte überliiferet sig[32], doch au doo het mä vermuetet, ass dr Archimedes dr Erfinder sig[33][34]. Au e Wasseruur-Mechanismus, wo au mit Bälleli zelt und wo im ene arabische Manuskript beschriibe isch, wird im Archimedes zuegeschriibe.[35]
Dr Leonardo da Vinci und dr Petrarca (wo sich uf e Handschrift vom Cucero gstützt het) häi im Archimedes d Erfindig von ere Dampfkanone zuegschriibe. Dr Leonardo het au Rekonstrukzionsskizze gmacht für d Machine, won er ere Architronito gsäit het.[36] Mä het spööter brobiert sä noochzbaue, wie s dr Griech Ioannis Sakas 1981 und dr italiänisch Ääscheniöör Cesare Rossi vo dr Uniwersidäät Neapel 2010 gmacht häi.[37][38] Dr Rossi het dört au de Brennspiegel e nöiji Interpretazioon gee - si häige d Hitz gliiferet zum Dampf mache. In de überliiferete antike Schrifte vom und über e Archimedes git s aber doodrfür käini Hiiwiis[39] und Expärte wie d Serafina Cuomo gseen din nume non e Bewiis für e legendär Ruef vom Archimedes, wo men em alli mööglige Erfindige zuegschriibe het. Uf jede Fall häi Grieche s Brinzip vo dr Dampfchraft kennt (Balle vom Heron, 1. Joorhundert n. d. Z.).
Dr Archimedes isch zwar wäge de vile Legände über en seer bekannt gsi in dr Antike, sini Wärk aber vil weniger, im Geegesatz zu öbberem wie dr Euklid, wo s Buech von em im domoolige wüsseschaftlige Zentrum Alexandria verfasst het.[40] Allerdings wird er vo de Mathematiker Heron, Pappos und Theon z Alexandria vilmol erwäänt. D Schrifte si zwüschen em 6. und 10. Joorhundert in Byzanz süstematisch gsammlet und kommentiert worde. Bekannt isch dr Kommentar vom Eutokios (wo vom Ändi vom 5. Joorhundert bis am Aafang vom 6. Joorhundert gläbt het) zu de wichdigste Archimedes-Schrifte (Über Kugel und Zylinder, Kreismessung, Gleichgewicht ebener Flächen), wo au im Middelalter in Westöiropa vil zur Kenntnis vo de Wärk bidräit und d Lüüt aagregt het. Bi dr erste Zämmestellig vo de Schrifte z Byzanz häi d Archidekte vo dr Hagia Sophia, dr Isidor vo Milet und dr Anthemios vo Tralleis e wichdigi Rolle gspiilt. Witeri Schrifte si drzuechoo, bis im 9. Joorhundert dr Leon vo Thessaloniki d Sammlig vo fast alle überliiferete archimedische Schrifte (usser Stomachion, Rinderproblem, Über die Methode und Über schwimmende Körper) uusebrocht het, wo als Kodex A (Heiberg) bekannt isch. Das isch äini vo de bäide Kwelle für die latiinische Übersetzige vom Wilhelm vo Moerbeke gsi (abgschlosse 1269). Im andere griechische Manuskript vom Archimedes, won em zur Verfüegig gstande isch, si Gleichgewicht ebener Flächen, Quadratur der Parabel, Über schwimmende Körper, villicht au Über Spiralen enthalte und dr Heiberg het em dr Naame Kodex B gee. S Archimedes Palimpsest, wo dr Heiberg 1906 entdeggt het (Kodex C, wo vorhär z Jerusalem gsi isch, und Über die Methode, Stomachion und Über Schwimmende Körper din si) isch de Übersetzer im Middelalter und in dr Rönessans umbekannt gsi. D Kodices A und B si us em Bsitz vo de normannische Köönig in Sizilie in Vatikan choo, wo dr Moerbeke si für sini Übersetzig brucht het. Wäärend im Moerbeke si Übersetzigs-Manuskript im Vatikan erhalte isch, isch dr Kodex B verlore gange[41]. Vom Kodex A git s meereri Abschrifte (nüün si bekannt), wo zum Bischbil im Bsitz vom Kardinal Bessarion (hüte in dr Biblioteca Marciana) und Giorgio Valla gsi si. S Original vom Kodex A isch au verschwunde.[42]
D Übersetzige vom Wilhelm vo Moerbeke häi bsundrigs die Gleerte vo dr Bariiser Schuel aagregt (Nicole Oresme, Johannes de Muris).
Es git au en arabischi Teggstüberliiferig. Im Archimedes sini wichdigste Wärk Über Kugel und Zylinder und Über Kreismessung si scho im 9. Joorhundert uf Arabisch übersetzt worde und mä het sä mindestens bis ins 13. Joorhundert immer wider nöi uusegee. Si häi vom 12. Joorhundert au im Weste Iifluss ghaa. Bsundrigs äi Übersetzig vo dr Mässig vom Kräis us em Arabisch ins Latiinische, wo woorschinlig vom Gerhard vo Cremona (12. Joorhundert) stammt, isch im Middelalter iiflussriich gsi.[43] Vo iim stammt au e latiinischi Übersetzig vom ene Drakdaat vo de Banū Mūsā Brüeder, wo no anderi Resultaat vom Archimedes din si: näbe dr Mässig vom Kräis und em Satz vom Heron, wo d Araber hüfig im Archimedes zuegschriibe häi, no Däil us Über Kugel und Zylinder. S Manuskript, wo as Verba filiorum bekannt isch, het zum Bischbil au dr Leonardo Fibonacci und dr Jordanus Nemorarius aagregt. Die bäide häi no vor dr Zit, wo im Moerbeke si Übersetzig entstande isch, as Mathematiker gschafft.
Um 1460 het dr Babst Nikolaus V. vom Jakob vo Cremona e nöiji Übersetzig uf Latiinisch lo mache, wo uf em Kodex A basiert het. Din si au d Däil vom Wärk gsi, wo dr Moerbeke nonig übersetzt het (Sandrechner und dr Kommentar vom Eutokios zur Kräismässig). Wil im dr Kodex B nit zur Verfüegig gstande isch, isch Über schwimmende Körper nit in dere Usgoob. Die Übersetzig het under anderem dr Nikolaus vo Kues benützt.
Die ersti druckti Usgoob, usser de Uszüüg, wo dr Giorgio Valla 1501 druckt het,[44] si die latiinische Übersetzige vo Kreismessung und Quadratur der Parabel vom Luca Gaurico in Venedig 1503 gsi (noch eme Manuskript us Madrid). Si si 1543 vom Niccolò Tartaglia no äinisch veröffentligt worde zämme mit im Moerbeke sine Übersetzige vo Gleichgewicht ebener Flächen und Über schwimmende Körper.
Die ersti Usgoob vom griechische Teggst isch 1544 z Baasel erschiine (uusegee vom Thomas Venatorius, dütsch Gechauff) zämme mit ere latiinische Übersetzig vom Jakob vo Cremona (korrigiert vom Regiomontanus). In dere Usgoob si au d Kommentar von Eutokios gsi. Für e lateinisch Teggst het er en Abschrift brucht, wo dr Regiomontanus um 1468 uf Dütschland brocht het[45] dr Übersetzig vom Jakob vo Cremona (bearbäitet vom Regiomontanus)[46] und für e griechisch Teggst e Handschrift, wo dr Willibald Pirckheimer us Rom uf Nürnbärg brocht het[47]. Das isch en Abschrift vom Kodex A gsi, und dorum feelt in deere Editio Princeps-Usgoob au Über Schwimmende Körper. 1558 isch e latiinischi Übersetzig von e baar Hauptschrifte vom Federicus Commandinus z Venedig erschiine. Anderi wichdigi Usgoobe vor dr Heiberg-Usgoob si die vom D´Rivault (Bariis 1615) gsi, wo nume d Broposizione uf Griechisch bringt und d Bewiis uf Latiinisch, und die vom Giuseppe Torelli (Oxford 1794).
Ältere Literatur:
Digitalisat:
Dä Artikel basiert uff ere fräie Übersetzig vu dere Version vum Artikel „Archimedes“ vu de dütsche Wikipedia. E Liste vu de Autore un Versione isch do z finde. |