Dr Chreis isch e sehr wichtigi geometrischi Figur. Als Ortskurve in ere Eebeni isch er so definiert, das er alli Pünkt P enthaltet, wo vom Mittelpunkt M die konstant Entfärnig r (Radius) hei.
Us dr vektorielle Gliichig loht sich ganz eifach wider d Koordinate gliichig härleite.
Dr Betrag vome Vektor cha me nämlig ganz eifach mitem Pythagoras bestimme ( x & y si d Koordinate vo P, u & v si d Koordinate vo M):
Dr Flecheninhalt vo dr Kräisflechi (lat.area: Flechi) isch broportional zum Kwadrat vom Radius bzw. vom Durchmässer vom Kräis. Mä bezäichnet en au as Kräisinhalt.
D Chrümmig git in jedem Punkt vom Kräisumfang aa, wie stark dr Kräis in dr ummiddelbare Umgääbig vom Punkt von ere Graade abwiicht. D Chrümmig vom Kräis im Punkt loot sich dur
berächne, wo wider dr Radius vom Kräis isch. Im Geegesatz zu andere mathematische Kurve het dr Kräis in jedem Punkt die gliichi Chrümmig. Usser em Kräis het nume no die Graadi e konstanti Chrümmig . Bi alle andere Kurve isch d Chrümmig vom Punkt abhängig.
In de Formle unde nooche bezäichnet dr Sektorwinkel im Boogemaass, dr Winkel im Graadmaass, wo d Umrächnig gältet. Bi dr Berächnig vo dr Flechi vom Kräisring isch dr üsseri Radius vom Kräisring und dr inneri.