ई लेख गणित के आधुनिक उपविषय बीजगणित (algebra) के बारे म छै। भारत के महान गणितज्ञ आर्यभट द्वारा रचित संस्कृत ग्रन्थ के लेली बीजगणित (संस्कृत ग्रन्थ) देखो।
right|thumb|300px|आर्यभट बीजगणित (algebra) गणित के व्यापक विभाग म स एक छै। संख्या सिद्धांत, ज्यामिति आरू विश्लेषण आदि गणित के अन्य बड़ो विभाग छीकै। अपनो सबसऺ सामान्य रूप म, बीजगणित गणितीय प्रतीक आरू इन प्रतीक म हेरफेर करला के नियम के अध्ययन छीकै।[१] बीजगणित लगभग सम्पूर्ण गणित को एक सूत्र में पिरोने वाला विषय है। आरम्भिक समीकरण हल करने से लेकर समूह (ग्रुप्स), रिंग और फिल्ड का अध्ययन जैसे अमूर्त संकल्पनाओं का अध्ययन आदि अनेकानेक चीजें बीजगणित के अन्तर्गत आ जातीं हैं। बीजगणित के प्रगत अमूर्त भाग को अमूर्त बीजगणित कहते हैं।
गणित, विज्ञान, इंजीनियरी ही नहीं चिकित्साशास्त्र और अर्थशास्त्र के लिए भी आरम्भिक बीजगणित अपरिहार्य माना जाता है। आरम्भिक बीजगणित, अंकगणित से इस मामले में अलग है कि यह सीधे संख्याओं का प्रयोग करने के बजाय उनके स्थान पर अक्षरों का प्रयोग करता है जो या तो अज्ञात होतीं हैं या जो अनेक मान धारण कर सकतीं हैं।[२]
बीजगणित चर तथा अचर राशियों के समीकरण को हल करने तथा चर राशियों के मान निकालने पर आधारित है। बीजगणित के विकास के फलस्वरूप निर्देशांक ज्यामिति व कैलकुलस का विकास हुआ जिससे गणित की उपयोगिता बहुत बढ़ गयी। इससे विज्ञान और तकनीकी के विकास को गति मिली।
महान गणितज्ञ भास्कराचार्य द्वितीय ने कहा है -
अर्थात् मन्दबुद्धि के लोग व्यक्ति गणित (अंकगणित) की सहायता से जो प्रश्न हल नहीं कर पाते हैं, वे प्रश्न अव्यक्त गणित (बीजगणित) की सहायता से हल कर सकते हैं। दूसरे शब्दों में, बीजगणित से अंकगणित की कठिन समस्याओं का हल सरल हो जाता है।
बीजगणित से साधारणतः तात्पर्य उस विज्ञान से होता है, जिसमें संख्याओं को अक्षरों द्वारा निरूपित किया जाता है। परन्तु संक्रिया चिह्न वही रहते हैं, जिनका प्रयोग अंकगणित में होता है। मान लें कि हमें लिखना है कि किसी आयत का क्षेत्रफल उसकी लंबाई तथा चौड़ाई के गुणनफल के समान होता है तो हम इस तथ्य को निमन प्रकार निरूपित करेंगे—
बीजगणिति के आधुनिक संकेतवाद का विकास कुछ शताब्दी पूर्व ही प्रारम्भ हुआ है; परन्तु समीकरणों के साधन की समस्या बहुत पुरानी है। ईसा से 2000 वर्ष पूर्व लोग अटकल लगाकर समीकरणों को हल करते थे। ईसा से 300 वर्ष पूर्व तक हमारे पूर्वज समीकरणों को शब्दों में लिखने लगे थे और ज्यामिति विधि द्वारा उनके हल ज्ञात कर लेते थे।
मोटे अर्थ में बीजगणित, गणित की उस शाखा को कहते हैं जिसमें संख्याओं के गुणों और उनके पारस्परिक संबंधों का विवेचन सामान्य प्रतीकों (symbols) द्वारा किया जाता है। ये प्रतीक अधिकांशतः अक्षर (a, b, c,...,x, y, z) और संक्रिया चिह्न (operation signs) (+, -, *,...) और संबंधसूचक चिह्न (=, > , <...) होते हैं। उदाहरणत:, x2 +3x = 28 का अर्थ है, 'कोई ऐसी संख्या x है, जिसके वर्ग में यदि उसका तीन गुना जोड़ दिया जाए, तो फल 28 मिलता है। बीजगणितीय प्रतीकों और संख्याओं का उपयोग न केवल गणित में किन्तु विज्ञान की विभिन्न शाखाओं में होने लगा है। व्यापक अर्थ में बीजगणित में निम्नलिखित विषयों का विवेचन सम्मिलित होता है :
समीकरण (equation), बहुपद (polynomial), वितत भिन्न (continued fraction), श्रेणी (series), संख्या अनुक्रम (sequence of numbers), सारणिक (determinant), समघात (form), नए प्रकार की संख्याएँ, जैसे संख्यायुग्म, मैट्रिक्स।