صنف فرعي من | |
---|---|
سُمِّي باسم | |
يدرسه | |
تعريف الصيغة | |
الرموز في الصيغة | |
وقت أقرب سجل مكتوب |
تتألف ثلاثية فيثاغورس من الأعداد الصحيحة a و b و c حيث a2 + b2 = c2.[3][4][5]
تكتب الثلاثية على الشكل (a, b, c) ومن الأمثلة الشهيرة عليها هي (5, 4, 3). إذا كانت (a, b, c) هي ثلاثية فيثاغورسية فإن (ka, kb, kc) من أجل أي عدد صحيح k تكون أيضاً ثلاثية فيثاغورسية. تكون الأعداد المشكلة لثلاثية فيثاغورس a, b و c أولية فيما بينها.
تم أخذ الاسم من مبرهنة فيثاغورس حيث تكون كل ثلاثية فيثاغورس حلاً لمبرهنة فيثاغورس.
هناك ست عشر ثلاثية فيثاغورس حيث c ≤ 100:
(3, 4, 5) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | (9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |