المواد السيراميكية | |
---|---|
أمثلة علي المواد السيراميكية في المجال الهندسي (رومان بلي مصنوع من Si3N4)
| |
| |
تعديل مصدري - تعديل |
يختلف علم المواد السيراميكية الهندسية عن فن السيراميك، حيث يشمل فن السيراميك الأسلوب التقني لقولبة وحرق الطين مثل أدوات الزينة والأدوات المنزلية. أما علم السيراميك فهو عبارة عن مواد تتضمن مجموعة واسعة من المواد التي يصعب تعريفها بشكل دقيق، ولكن التعريف الأقرب أنها مواد غير عضوية و غير معدنية حضرت بواسطة الحرارة أو التبريد.[1] المواد السيراميكية ممكن أن تحتوي علي تكوين بلوري أو شبه بلوري, و تحتوي هذه المجموعة علي عده خصائص منها الصلادة, مقاومة التشكيل المرن, تحمل درجات الحرارة, مقاومة التآكل, توصيل منخفض للحرارة، وتوصيل منخفض للكهرباء مما يجعلها مستخدمه في الكثير من التطبيقات مثل الصناعات الطبية, الصناعات الحربية, صناعه مركبات الفضاء, صناعة السيارات, الاتصالات, و الكثير من التطبيقات الأخرى.[2]
يمكن تصنيف المواد السيراميكية الحديثة إلي ثلاثة أنواع: سليكاتي، أوكسيدي, ولا أوكسيدي
أكثر ما يميز السيراميك السليكاتي هو الطور الزجاجي عديم الشكل مع البناء المسامي الواضح، المركب الأساسي هو ثنائي أكسيد السيليكون مع إضافة أكسيد الألومنيوم, أكسيد المغنسيوم, أكسيد البيريليوم, أكسيد الزركونيوم الرباعي ,و أكاسيد أٌخري.
يصنف السيراميك الأوكسيدي من السيراميك السليكاتي ولكن بسيطره الطور البلوري مع نسبه صغيرة من الطور الزجاجي. من أهم الأكاسيد:
يمكن تحسين خصائص هذه الأكاسيد عن طريق الإضافة. المواد السيراميكية ذات الصلابة المتشتتة تكون في الغالب سيراميكيات-Al2O3. إضافة الأكاسيد الأخرى مثل(MgO,Y2O3,CaO,CeO) يمكن أن تعوق التحويل بشكل كامل أو بشكل جزئي وينتج عنها الآتي:
ZrO2 مستقر بشكل جزئي مع MgO | Mg-PSZ |
ZrO2 مستقر بشكل جزئي مع Y2O3 | Y-PSZ |
ZrO2 مستقر بشكل جزئي مع MgO و CaO | MG/Ca-PSZ |
ZrO2 رباعي الاضلاع مع Y2O3 | Y-TZP |
ZrO2 مستقر بشكل كامل مع CaO2 | Ca-CZS |
ZrO2 مستقر بشكل كامل مع Y2O3 | Y-CZS |
MgO.Al2O3 | إسبينل |
3Al2O3.2SiO2 | Mullite |
Al2TiO5(Al2O3.TiO2) | Aluminium Titanate |
العنصر الرئيسي للسيراميك اللا اوكسيدي هو الكربون على شكل الجرافيت أو الماس:
نيترات | AiN,BN,Si3N4,TiN |
كربيدات | B4C,SiC,TiC,WC |
بوريدات | TiB2, ZrB2 |
سيلينات | ZnSe |
سيليكات | MoSi2 |
سيالونات | Si3N4 مع Al2O3 |
سيلونات | So3N4 مع Al2O3 مع Y2O3 |
يجب معرفة بعض المقارنات الهامة:
تحوي صفوفًا من الذرات المتجمعة والمرتبة بشكل دوري مكونة تشكيلة ثلاثية الأبعاد ولذلك فيكون تركيبها عبارة عن تكرار نموذج أو خلية وحدة تملك نوعًا من التماثل ثلاثية الأبعاد. هذه الدورية في المواد المتبلورة تدعى ترتيب طويل المدى بهذه الدورية في أبعادها الثلاثة وتحتفظ البلورة التامة وإلى ما لا نهاية لكل محور.
تتجمع ذراتها بشكل عشوائي وبدون نظام أو نسق محدد بحيث لا يمكن اعتبار تركيبها تكرارًا لأي خلية وحدة (مثل الكربون والزجاج) وتقع السوائل ومنصهرات المعادن البلورية ضمن المواد العشوائية الترتيب فانه يكون عشوائي في حالة أحادي أكسيد السيليكون الذري. يمكن أن تكون للمركب الواحد حالتين التبلور وغير التبلور مثل ثنائي أكسيد السيليكون وقد تتحول السيليكا ومتبلور في الطبيعة في حالة الكوارتز زجاج السيليكا كما في الكرستوبلايت إلى أطوار بلورية أثناء التسخين إلى التردمايت.[4]
الطور السيراميكي | الطور المعدني |
---|---|
يحتوي على خليط من مواد معدنية ولا معدنية مثل اتحاد الأوكسجين مع الألمنيوم لتكوين أكسيد الألومنيوم | يتكون من عناصر معدنية فقط. |
لا يحتوي على أعداد كبيرة من الالكترونات الحرة فهي إما أن تكون تساهمية بين الذرات أو أيونية | تحتوي على أعداد كبيرة من الالكترونات الحرة
الغير مرتبطة بالذرة. |
الأواصر"الروابط" مرتبة بشكل اتجاهي أي أن قوة الآصرة محددة الموقع فلا يحدث انزلاق بين البلورات، لذلك هي تقاوم الانضغاط | الأواصر مرتبة بصورة منتظمة بين الذرات لذلك يمكن أن يحدث انزلاق بين البلورات. لذلك هي قليلة المقاومة للانضغاط. |
تفتقر إلى المطيلية أي أنها هشة وتمتاز بمقاومة عالية للتشوه اللدن في حالة الشد. | تمتاز بالمطيلية ولها القابلية للتشوه اللدن. |
تتركز في المواد السيراميكية اجهادات موضعية وعند عدم وجود تآصر في منطقة معينة فان المادة تتهشم وتتكسر. | لا تظهر فيها حالة الاجهادات الموضعية والتهشم. |
بسبب الترابط الأيوني فان المادة السيراميكية عالية الاستقرار والتحمل فهي صلبة وذات درجة انصهار عالية ومقاومة عالية للمواد الكيمياوية. | اقل استقرارية لمعظم المعادن وذات درجة انصهار اقل. واقل مقاومة للمواد الكيمياوية. |
أكثر السيراميكيات قليلة التوصيل للكهربائية حتى في درجات الحرارة العالية. لذلك تستخدم عوازل كهربائية. | جيدة التوصيل للكهربائية. |
معظم السيراميكيات قليلة التوصيل الحراري (عازل حراري جيد). | معامل توصيل حراري عالي. |
بعض السيراميكيات تكون شفافة خصوصًا في المقاطع الرقيقة لانعدام الالكترونات الطليقة. | معتمة. |
المعدن | خزف | البوليمر |
---|---|---|
كثافة عالية | كثافة واطئة | كثافة واطئة جدًا |
درجة حرارة الانصهار تتراوح بين المتوسطة إلى العالية | درجة حرارة الانصهار عالية جدًا | درجة حرارة الانصهار واطئة |
معامل المرونة يتراوح بين المتوسط إلى العالي | معامل المرونة عالي جدًا | معامل مرونة واطىء |
يتفاعل (نشط) | لا يتفاعل | نشط جدًا |
مطيلي | هش | أنواع منه مطيلي وأخرى هش |
تنصهر المواد الصلبة المتبلورة فجأة عند درجة حرارة معينة يمكن قياسها بخطأ تجريبي لا يزيد على . ±0.01oC
عند إعطاء مادة صلبة طاقة حرارية فان ذراتها المقيدة سوف تمنح طاقة حركية للتذبذب بسعات أكبر من السعة التي كانت تتذبذب بها قبل التسخين وبزيادة هذه الطاقة تزداد السعة إلى أن تصل الطاقة الحركية الممنوحة للذرات إلى الحد الذي تتمكن به الذرّة من التحرر من طاقة الأواصر الربطة فتكون المادة هنا بحالة جديدة هي السائلة (منصهر المادة الصلبة) حيث يصبح ترتيب الذرات هنا عشوائي فتكون المادة غير بلورية، وعند البدء بتبريد هذا المنصهر سوف نبدأ بإزالة الطاقة من هذه الذرات مما يؤدي إلى تصلب المادة تدريجيًا مؤديًا ذلك إلى انكماش المادة وتقارب ذراتها وصغر حجمها وزيادة كثافتها وعند تقارب الذرات فيما بينها تتكون بذرة نواة التصلب على شكل جزر تتفرع منها تشكيلات شجيرية للتصلب مؤدية إلى تصلب المادة بشكل بلوري. إن سبب تكون بذرة التصلب في المنصهر قبل غيرها يعود إلى أن المنصهر ككل هو ليس بدرجة حرارة واحدة (أي اختلاف درجة حرارة المنطقة عن الأخرى بقليل) فالمناطق الأقل درجة حرارة ُتكون حالة البذرة وسوف تبرد المناطق المجاورة لها ومن ثم إلى جميع أجزاء المنصهر. إن معدل التبريد للمنصهر تأثير على إعادة انتظام الذرات ورصها فكلما كان معدل التبريد بطي (يعتمد على نوع المادة) كلما كانت الفترة الممنوحة للذرات لكي تفقد طاقتها كبيرة ولذلك سوف تفقد الطاقة بالتدريج لتتراص الذرات وتتخذ كثافات أكبر وحجوم اقل وبالتالي الانتظام البلوري.
للحصول على بلورة أحادية لمادة من بلورة متعددة التبلور أو غير متبلورة أصلا لنفس المادة نقوم بما يلي:
هناك عدة طرق يتم من خلالها الحصول على بلورات أحادية وهذه الطرق تدعى طرق (الإنماء البلوري) وقد تتم عملية الإنماء البلوري في جو الغرفة أو في أجواء خاصة يتم التحكم بها. أشهر هذه التقنيات هي:
يمكن تصنيع المواد السيراميكية عبر طرق متنوعة ويتم تصنيف تقنيات تصنيع المواد السيراميكية إلى:
وتنقسم بدورها إلى:
تصنع المنتجات السيراميكية بطريقة تكنولوجيا المساحيق (P/T)(Powder Technology) لذلك تصنيع المواد السيراميكية يبدأ من مساحيقها وليس من منصهراتها لان الحصول على منصهر من مادة سيراميكية صعب جدًا وذلك لارتفاع درجة حرارةانصهار المواد السيراميكية(أكثر من2000 درجة مئوية في أكثر الأحيان) ولصعوبة احتواء المنصهر السيراميكي في قالب درجة حرارة انصهاره محدودة.
التحضير وقليل جدًا تجرى عمليات لاحقة (Finishing).
حرارة الانصهار تقريبًا لدمج حدود الحبيبات.
للأشكال المعقدة.
وليست عيب.
(Ceramic-Metal).
تحدد مسبقًا أثناء التشكيل.
في توزيع الحبيبات.[6]
تستخدم السيراميك في مجموعة واسعة من التطبيقات:
العزل الحراري الجيد للسيراميك ولذلك يستخدم في الأفران والبلاط والخارج على المسبار المكوك بعض سيراميك شفافة إلى الرادار والموجات الكهرومغناطيسية الأخرى، ويتم استخدامها في ناقلي صلابة، مقاومة التآكل لدرجات الحرارة العالية والظروف الكاوية للغاية تسمح باستخدام السيراميك في تطبيقات خاصة حيث يمكن استخدام أي مواد أخرى
يصنع من السيراميك والمعادن الشائعة مثل الفلسبار والتلك. والصلصال، والسيليكا منتجات خزفية مقاومة لدرجات الحرارة العالية، وهذه المعادن تعرف باسم سيليكات وهم يشكلون الغالبية من القشرة الأرضية. في مختبر الكيمياء صياغة السيراميك المتقدمة مثل الألومينا وكربيد السيليكون، وتيتانات الباريوم من مزيج ما عدا السيليكات.
وتنقسم منتجات الخزف إلى 4 قطاعات:
تقدم ما يلي المنتجات الصناعية للسيراميك والمنتجات القائمة على هذه الصناعة:
و أيضا من المنتجات الصناعية للسيراميك:
غالبا ما تكون مصنوعة منتجاتها من المواد الأخرى من الطين، والذي تم اختياره لخصائصها الفيزيائية خاص. ويمكن تصنيف هؤلاء على النحو التالي:
ويمكن استخدام السيراميك في العديد من الصناعات التكنولوجية. طلب واحد هي بلاط السيراميك في المكوك الفضائي التابع لناسا، وتستخدم لحمايته ومستقبل الطائرات الأسرع من الصوت الفضاء من الحرارة الحارقة العائدة إلى الغلاف الجوي للأرض. كما أنها تستخدم على نطاق واسع في مجال الالكترونيات والبصريات. بالإضافة إلى التطبيقات المذكورة هنا، وتستخدم أيضا بوصفها طلاء الخزف في حالات الهندسية المختلفة. على سبيل المثال سيكون طلاء السيراميك تحمل أكثر من إطار التيتانيوم المستخدمة للطائرة. في الآونة الأخيرة قد حان هذا المجال لتشمل دراسات من بلورات واحدة أو الألياف الزجاجية، بالإضافة إلى مواد الكريستالات التقليدية، وتطبيقات هذه قد تداخل وسريع التغير.
وتحمل العيوب نقطة في البلورات الأيونية. وCoulombic قوات كبيرة جدا، وأية تهمة عدم التوازن لديه قوي الميل إلى موازنة نفسه. للحفاظ على حياد تهمة يمكن أن تنشأ عيوب نقطة عدة: فرنكل العيب هو زوج من الكاتيون (ايون موجب) شغور والخلالي الموجبة. (قد يكون أيضا أنيون (سلبي ايون) الشواغر والخلالي أنيون. ومع ذلك هي الأنيونات أكبر من الكاتيونات وأنه ليس من السهل لالخلالي أنيون لتكوين) شوتكي العيب هو زوج من الوظائف الشاغرة وأنيون الكاتيون فرانكل وشوتكي العيوب لا تتغير نسبة من الكاتيونات إلى الأنيونات → المجمع هو القياس المتكافئ
قد تنبأ به الصيغة الكيميائية) تحدث عند واحد ايون يمكن نوع موجود في الولايات التكافؤ اثنين، على سبيل المثال FE2 + FE3
2 أيونات الحديد في الدولة + 3، ثم شاغر الحديد هو مطلوب للحفاظ على حياد تهمة → أقل أيونات الحديد يمكن للذرات ا لموجودة إما بديل أو الصلبة حلول الخلالي
interstitials أنيون المستبعد
التعويض عن عيوب نقطة[6]
تقنية النانو هو التقنيات المتناهية في الصغر ونسبة التسمية ( نانو) حرفياً هي تقنيات تصنع على مقياس النانو متر . فالنانو هو أدق وحدة قياس مترية معروفة حتى الآن ( نانو متر) وهو جزء من الألف من الميكرومتر أي جزء من المليون من الميليمتر. عادة تتعامل تقنية النانو مع قياسات بين 0.1 إلى 100 نانومتر أي تتعامل مع تجمعات ذرية تتراوح بين خمس ذرات إلى ألف ذرة. وهي أبعاد أقل كثيرا من أبعاد البكتيريا والخلية الحية. ، و حجم النانو أصغر بحوالي40.000 مرة من سمك الشعرة البشرية و تعتمد تقنية النانو على تحويل المواد إلى الحجم الذري، فتحويل المواد الي الحجم الذري سيكون الطريق الجديد لبناء الآلات الدقيقة مثل الروبوتات .[8] و يعتبر تقنية النانو هو الجيل الخامس في عالم الالكترونيات، وقد أحدثت تقنية النانو ثورة في العديد من المجالات العلمية و الصناعية والطبية و العسكرية . إن تقنية النانو قد أحدثت ثورة هائلة في مجال الصناعة. إن إمكانية الحصول على مساحيق للمواد مع جزيئات لا يتجاوز قطرها مرتبة الميكرون قد مكن العالم الصناعي من تطوير مواد أو بنى جديدة تجمع بين الخصائص المرغوبة والإنجاز المطلوب منها . إن الطريقة التقليدية في تصنيع المواد الكيماوية المختلفة تتم بخلط مكونات التفاعل معا بدون الأخذ في الاعتبار اتجاه الذرات الداخلة في التفاعل وبالتالي فإن المادة الكيماوية الناتجة تكون خليطا من عدة مواد، أما باستخدام تقنية النانو فمن الممكن توجيه وضع الذرات الداخلة في التفاعل بتوجيه محدد وبالتالي فان المواد الناتجة سوف تكون أكثر دقة وأكثر نقاوة من التصنيع بالطرق التقليدية وكذلك قإن تقنية النانو تعمل على تقليل تكلفة الإنتاج وخفض الطاقة المستهلكة.[9] وهناك أجهزة على مستوى النانو تقوم بتوجيه الذرات ووضعها في مكانها الصحيح أثناء عملية التفاعل. و أيضاً هناك مركبات تم هندستها بتقنية النانو لتتوافق مع مستوى الجزيئات والذرات، لذا فإن هذه التقنية ستخدامت في كل من التشخيص والعلاج للأمراض من شتى المجالات ومنها أمراض القلب والمخ والأعصاب والحروق والإصابات ومشاكل الإنجاب، وأيضاً استخدمت بطريقة فعّآلة في مستحضرات التجميل. فمن الناحية العلاجية يمكن بواسطة هذه التقنية استئصال والقضاء على المرض وذلك بالبحث عن وتدمير الخلايا المسببة للأمراض وكذلك علاج أو إصلاح الخلايا التالفة وأيضا استخدام مضخات أو وسائل على مستوى التكنولوجيا الجزيئية كناقلة للأدوية وهناك ثلاثة مراحل للوصول إلى مواد وأجهزة وآلات مصنعة بالتكنولوجيا النانوية هي:
نستنتج مما سبق أن التكنولجيا النانوية تحتاج إلى بلايين من المستنسخات لبناء البلايين من المجمعات وهذه لن يزيد حجمها عن مكعب بحجم 1 ميليمتر مكعب والتي بدورها تتحكم في الذرات. وقد أوردت مجلة الايكونوميست مؤخرا أن الكلام بدأ عن ماده جديدة مصنوعة من نانو جزيئات تدعى قسم " Quasam " تضاف إلى البلاستيك وخزف والمعادن فتصبح قويه كالفولاذ خفيفة كالعظام وستكون لها استعمالات كثيرة خصوصا في هيكل الطائرات والأجنحة، فهي مضادة للجليد ومقاومه للحرارة حتى 900درجه مئوية.[10]