عملياً فإن النسبة غالباً ما تكون صغيرة جداً. على سبيل المثال نصف قطر شفارتزشايلد للأرض هو تقريباً يساوي 9 مم (3/8 إنش)، حيث قمر صناعي في مدار أرضي جغرافي متزامن له نصف القطر r وهو تقريباً أربعة مليارات أكبر وذلك عند 42,164 كم (26,200 ميل). حتى على سطح الأرض فالتصحيحات للجاذبية النيوتونية هي فقط جزء واحد من مليار. أما عند الأجسام عالية الكثافة مثل الثقوب السوداءوالنجوم النيوترونية فعندها تصبح النسبة فقط أكبر.
رغم أن الثقوب السوداء المشحونة المحققة للشرط rQ ≪ rs تتشابه مع ثقوب شوارتزشايد السوداء، إلّا أنه لديها أفقين: أفق الحدثوأفق كوشي داخلي.[3] مثل مترية شوارتزشايد، تقع أفاق الحدث للزمكان حيث مكون المترية grr يتباعد وذلك حيث:
إن لهذه المعادلة حلين:
تصبح أفاق الحدث المتمركزة هذه منفطرة عند تحقيقها 2rQ = rs وهو ما يقابله ثقب أسود أقصى. لا يمكن للثقوب السوداء المحققة للشرط 2rQ > rs أن توجد في الطبيعة لأن كون الشحنة أكبر من الكتلة يمنع وجود أفق حدث فيزيائي[4] (يصبح الحد تحت الجذر التربيعي سالباً). من الممكن للأجسام ذات الشحنة الأكبر من كتلتها أن توجد في الطبيعة، لكنها لا يمكن لها الانهيار إلى ثقب أسود، وإذا استطاعت ذلك فإنها ستؤدي إلى تفرد مجرد.[5] عادةً ما تضمن نظريات التناظر الفائق عدم وجود مثل هذه الثقوب السوداء «البالغة لحدودٍ قصوى».
في حال تضمين أحاديات القطب المغناطيسية في النظرية، فإنه يمكن إيجاد تعميم لتضمين الشحنة المغناطيسية P باستبدال Q² بـ Q² + P² في المترية وتضمين الحد Pcos θ dφ في الكمون الكهرومغناطيسي.[بحاجة لتوضيح]
^Nordström، G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam. ج. 26: 1201–1208.
^Chandrasekhar، S. (1998). The Mathematical Theory of Black Holes (ط. Reprinted). Oxford University Press. ص. 205. ISBN:0-19850370-9. مؤرشف من الأصل في 2013-04-29. اطلع عليه بتاريخ 2013-05-13. And finally, the fact that the Reissner-Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon,' provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.