إقليدس | |
---|---|
(بالإغريقية: Εὐκλείδης) | |
تمثال إقليدس في متحف جامعة أكسفورد
| |
معلومات شخصية | |
اسم الولادة | (بالإغريقية: Εὐκλείδης)[1] |
تاريخ الميلاد | 300 قبل الميلاد |
تاريخ الوفاة | 265 قبل الميلاد |
الإقامة | الإسكندرية، مصر |
مواطنة | أثينا الكلاسيكية |
العرق | يوناني |
الحياة العملية | |
المهنة | رياضياتي، وكاتب |
اللغات | الإغريقية |
مجال العمل | الرياضيات |
سبب الشهرة | الهندسة الإقليدية العناصر لإقليدس |
أعمال بارزة | أصول إقليدس[2]، وهندسة بديهية |
تعديل مصدري - تعديل |
إقليدس بن نوقطرس بن برنيقس الإسكندري[3] (إغريقية: Εὐκλείδης وتلفظ [eu̯.kle:.dɛ:s]) ولد 300 قبل الميلاد، عالم رياضيات يوناني، يلقب بأبي الهندسة. مشوار إقليدس العلمي كان في الإسكندرية في أيام حكم بطليموس الأول (323–283 قبل الميلاد). اشتهر إقليدس بكتابه العناصر وهو الكتاب الأكثر تأثيرا في تاريخ الرياضيات، وقد استخدم هذا الكتاب في تدريس الرياضيات (وخصوصا الهندسة) منذ بدايات نشره قديما حتى نهاية القرن الـ19 وبداية القرن الـ20[4][5][6] بين ثنايا هذا الكتاب مبادئ ما يعرف اليوم باسم الهندسة الإقليدية التي تتكون من مجموعة من البديهيات. أنشأ إقليدس بعض المصنفات أيضا في حقول عديدة؛ كالمنظور، القطع المخروطي، الهندسة الكروية، ونظرية الأعداد وغيرها.
الاسم إقليدس هو تعريب للفظ اليوناني Εὐκλείδης، والتي تعني «المجد الحسن».
ما يعرف عن حياة إقليدس قليل جدا جدا، وهنالك مصادر محدودة تتحدث عنه. وفي الواقع، المصادر الأساسية عن إقليدس كانت بعد قرون عديدة من حياته، ومؤلفاها هما بروكلس وبابس الإسكندري.[7] وكان لبروكلس نبذة قصيرة عن إقليدس في مؤلفه التعقيب على العناصر، المكتوب في القرن الخامس للميلاد، حيث ذكر أن إقليدس هو مؤلف كتاب العناصر، وأنه قد ذكر على لسان أرخميدس، وذكر حدثا عندما سأله بطليموس الأول عن طريق قصير للهندسة عدا كتاب العناصر، أجابه قائلا «لا يوجد طريق ملكي إلى الهندسة».[8] وعلى الرغم من ذلك، كان استشهاد «الطريق الملكي» محل شك وسؤال نظرا لتشابهه مع قصة مينايخموس مع الإسكندر الأكبر.[9] أما في المرجع الوحيد المتبقي، فقد ذكر فيه بابس بشكل موجز في القرن الرابع عشر أن أبولونيوس «قضى وقتا طويلا مع تلاميذ إقليدس، وكان بذلك اكتسابه العادة العلمية الخاصة بإقليدس.»[10] ويعتقد البعض أن إقليدس قد درس في الأكاديمية الأفلاطونية في اليونان.[11]
ما زال الزمان والمكان لمولد ووفاة إقليدس غير معروفين، ويقدر بشكل قريب من الأرقام المذكورة في المصادر المعاصرة. لا يوجد أي وصف كتابي أو مجسم يصف الشكل الفيزيائي لإقليدس (حيث اعتاد اليونانيون صنع تماثيل لأشهر أعلامهم). أما بالنسبة للوصف الحالي، فهو عبارة عن وصف تخيلي لإقليدس على يد فنانين معاصرين.
على الرغم من أن استنتاجات كتاب العناصر توصل اليها علماء الرياضيات القدامى، ألا أن إنجاز إقليدس هو ضم جميع هذه الاستنتاجات في عمل مفرد وفي إطار متماسك منطقيا. مما يجعله سهل للاستعمال وسهل للمرجعية. بما في ذلك نظام صارم من البراهين الرياضياتية التي لا تزال قاعدة أساسية للرياضيات خلال 23 قرنا.[13]
ليس هناك أي ذكر لإقليدس في النسخ الأقدم للكتاب، وأغلب النسخ مكتوب عليها «من إصدار ثيون» أو «محاضرات ثيون»،[14] بينما النسخة التي تصنف كالأولى، والموجودة في الفاتيكان، لا تذكر اسم أي مؤلف. والمرجع الوحيد الذي يخبرنا بأن إقليدس هو مؤلف العناصر هو بروكلس وكتابه المرجع الذي يستند إليه المؤرخون في تحديد المؤلف، مؤلفه التعقيب على العناصر الذي يذكر فيه إقليدس كمؤلف للكتاب.
على الرغم من شهرة الكتاب في مجال الهندسة الرياضية، فالكتاب أيضا يتحدث عن نظرية الأعداد. وهو يضع بعين الاعتبار العلاقة بين الأعداد المثالية وأعداد ميرسين، واللاتناهي في الأعداد الأولية، وسدة إقليدس في التحليل (والتي قادت إلى المبرهنة الأساسية في الحساب في تفرد التحليل للعوامل الأولية)، وكما أن فيه خوارزمية إقليدس لإيجاد القاسم المشترك الأكبر من رقمين.
النظام الهندسي الموصوف في كتاب العناصر عرف قديما باسم الهندسة، واعتبرت أنها الهندسة الوحيدة الممكنة. أما اليوم، فهي تعرف باسم الهندسة الإقليدية لفصلها عن الفرع المسمى بالهندسة اللاإقليدية التي اكتشفها علماء الرياضيات في القرن الـ.19
كتاب العناصر هو عمل هائل جمع المعلومات الهندسية الموجودة في زمانه بين ضفتى كتاب مع تقديم البراهين عليها. وحاول اقليدس أن يكون متجردا وموضوعيا فافرد في مقدمة كتابه المبادئ الاساسية اللتى تقوم عليها هندسته. واستطاع ان يحدد 33 نقطة هي حروف الهجاء التي تقوم عليها لغة الرياضيات كلها. فقد حدد اقليدس أول 23 تعريف (بالإنجليزية: definitions) للمفاهيم الأساسية اللتى تتعامل معها هندسته. ثم قدم 5 بديهيات (بالإنجليزية: axioms) و 5 مسلمات (بالإنجليزية: postulates).
اما بالنسبة للغة اقليدس فينبغى ان نلاحظ ان مصطلح خط لا يعنى خطا مستقيما بالضرورة فالخط قد يكون منحنى أو قد يكون مستقيم. وإذا أردنا الإشارة إلى خط مستقيم فلا بد أن نستخدم صفة الاستقامة. وكذلك الحال بالنسبة للأسطح فالسطح هو شكل ثنائى الابعاد ولكنه قد يكون مستوى أو منحنى فاذا اردناه مستويا لابد ان نستخدم كلمة مستوي. وكذلك يجب ان ننتبه ان اقليدس عندما كان يذكر خطا مستقيما كان يعنى قطعة مستقيمة محدودة الطول. على العكس العرف الرياضي الساري اليوم ان الخط المستقيم ممتد لانهائى لا نهاية له. وكذلك الحال بالنسبة للسطح فأجسام اقليدس لم تعرف اللانهاية.
اما البديهيات فهى اشياء صحيحة بالبديهة ونقوم بالتسليم بصحتها كما هي بدون نقاش. اما المسلمات فهى أيضا اشياء نسلم بصحتها بالسليقة بدون اقامة البرهان على صحتها. والفارق بين المسلمات والبديهيات ان الشكوك اللتى قد تحوم حول المسلمات مبررة أكثر من اللتى قد تقوم حول البديهيات. بمعنى ان التشكيك في البديهيات أصعب من التشكيك في المسلمات.
تعريفات اقليدس نسردها فيما يلي:
أما البديهيات الخمسة فهى:
أما المسلمات الخمسة فهى:
{{استشهاد ويب}}
: الوسيط |chapter=
تم تجاهله (help)
{{استشهاد بكتاب}}
: تأكد من صحة |isbn=
القيمة: طول (مساعدة)
جزء من سلسلة مقالات حول |
الهندسة الرياضية |
---|
علماء الهندسة |
بوابة هندسة رياضية |