هذه الخوارزمية تطبق على مشكلة الاقتران الأمثل المتمثل بمصفوفة الحدوث R و عناصرها rij ≥ 0 . تبحث الخوارزمية عن عناصر rij ليس لها أي صف مشترك (لا سطر مشترك و لا عمود مشترك) و مجموعها المتراكم له أكبر قيمة ممكنة. صممت هذه الخوارزمية سنة 1955 من طرف هارولد كوهن.[1]
تعرّف المتغيرات التالية :
ui يسمى كمون السطر i ، و vj كمون العمود j ، مع الشرط لكل عنصر ui + vj ≥ rij
المصفوفة Q ، تدعى مصفوفة المساواة و عناصرها qij
عملية الانتقال : السطر i المسند في عمود j يتم إسناده إلى عمود k مع k ≠ j ،
في المصفوفة Q ، الانتقال يستبدل *1 ب 1 ، و 1 ب *1 في نفس السطر
سطر ضروري : سطر مسند فيه إمكانية للانتقال ،
في المصفوفة Q ، هو سطر يحتوي على *1 و 1 في عمود غير مغطى
عمود مغطى : عمود تم إليه إسناد سطر، لا توجد إمكانية انتقال ،
في المصفوفة Q ، هو عمود يحتوي على *1 في سطر غير ضروري
عمود مؤهل : عمود لا يحتوي على *1
الإسناد كامل إذا لم يمكن إسناد سطرا غير مسند في عمود غير مسند إلا بعد القيام بانتقال
الخوارزمية بعد عملية تهيئة تتمثل في التكرار المتناوب لإجراءين (I البحث عن انتقال متزايد) و (II تسوية المصفوفة Q)
ui = أكبر عنصر rij في كل سطرi
0 = vj في كل عمود j
qij = 0 إذا
ui + vj > rij
qij = 1 إذا ui + vj = rij
لجميع الأسطر في Q
{ تفحّص السطر من اليسار إلى اليمين
غيّر أول 1 تواجهه إلى *1 إذا لا يوجد *1 في عموده}
// سرد عمليات الانتقال الممكنة بدءًا من عمود مؤهل
لجميع أعمدة Q المؤهلة (لا تحتوي على *1)
ألحق كوهن تعديلات [2] على الطريقة المجرية مستوحاة من الأعمال المتزامنة لمارشال هول [3] و فورد و فيولكرسون [4] ، و خاصة ميونكرز الذي أتى بالبرهان النظري لصحة الخوارزمية.[5]
تتمثل مراجعة الطريقة المجرية في إعادة النظر إلى الإجراء I للخوارزمية من زاوية نظرية البيان. يجدي اعتبار Q مصفوفة حدوث لبيان ثنائي و عناصرها التي تساوي *1 تمثل حواف إقتران M ، في هذه الحالة عملية إيجاد تسلسل 1 ،*1 ، 1، *1 ، 1 ... يرجع إلى البحث عن مسار متزايد حول الاقتران M. لم يأتي الحل الأمثل لهذا المشكل إلا بعد عمل هوبكروفت و كارب حيث أصبحت طريقتهما تستغل على نطاق واسع في إطار الاسناد الأمثل لغرض البرمجة الحازمة لالإجراء I
المسألة تطرح بالنظر إلى مصفوفة A وسعها n×n تسمى مصفوفة التكلفة ، عناصرها aij أعداد حقيقية غير سالبة ، المطلوب هو إيجاد n عناصر لا تشترك في صف بحيث تحقق أقل مبلغ aij∑ ممكن
ترجع الطريقة المستخدمة لحل هذه المشكلة إلى جهود كوهن ثم ميونكرر لتحسين وتبسيط تطبيق الطريقة المجرية
الصف يعني سطر أو عمود من المصفوفة A
الغطاء هو مجموعة الصفوف التي تحتوي على جميع الأصفار 0 في A
• لجميع أسطر A أطرح أصغر عنصر في السطر من جميع عناصر السطر
• لجميع أعمدة A أطرح أصغر عنصر في العمود من جميع عناصر العمود
• قم بتغطية كل 0 في المصفوفة A بأقل عدد ممكن من الصفوف k
طالما k < n
ليكن G البيان الثنائي الذي يمثل حوافه كل 0 في A
الاقتران الكامل في G هو الإسناد الأمثل
وصف الخوارزمية هذا لا يتطرق إلى تفاصيل إجراء اختيار أدنى تغطية في كل تكرار.