تمييز الأنماط أو التعرف على الأنماط أو التعرف على النماذج (بالإنجليزية Pattern recognition) هو أحد فروع علم تعلم الألة وبشكل عام الذكاء الاصطناعي [1]، وتهدف البحوث والتقنيات الخاصة بهذا العلم إلى إيجاد أو تطوير تقنيات للتعرف على أنماط أو هياكل محددة في الإشارات الرقمية، حيث يمكن للإشارة أن تمثل صورة تحوي حرف مكتوب أو مقطع موسيقي أو مقطع كلامي يمثل كلمة أو حتى نص حاسوبي، ويمكن أن يكون النمط المطلوب التعرف عليه هو الحرف الذي تحويه الصورة أو الآلة المستخدمة في المقطع الموسيقي أو الكلمة الملفوظة في المقطع الكلامي أو تحديد ما إذا كان النص الحاسوبي يتحدث عن الفيزياء أو الأدب أو السياسة...
نريد بناء نظام يحتفظ بمجموعة من النماذج P1, P2, …., Pn ، وعندما يقوم المستخدم بإدخال إشارة ما P، على النظام أن يقرر النموذج Pi الذي تمثله هذه الإشارة.
فمثلاً في مجال التعرف على الكلام، فإن المعلومات اللغوية في الإِشارة هي التي تحدد الكلمة، وليست المعلومات التي تحدد المتكلم أو حالته النفسية. لو استطعنا استخلاص المعلومات اللغوية بشكل دقيق، يصبح التعرف أسهل (إذ نكون قد حذفنا معلومات أخرى غير مفيدة في التعرف). لا يمكن بسهولة فصل المعلومات اللغوية، لذلك نقوم بمجموعة من العمليات التي تساعد في ذلك ثم تقوم بحساب مجموعة من القيم التي تحدد الكلمة المطلوبة وكلما اختلفت هذه القيم من أجل النماذج المخزنة، كلما كان الاستخلاص أفصل، إذا يصبح التمييز بينها سهل.