سطح مكافئ

سطح مكافئ
سطح مكافئ إهليلجي
معلومات عامة
صنف فرعي من
تعريف الصيغة
عدل القيمة على Wikidata
لديه جزء أو أجزاء
سطح مكافئ زائدي

في الرياضيات السطح المكافئ (Paraboloid) هو أحد السطوح الثنائية ثلاثية الأبعاد والذي معادلته كالتالي:

(للسطح المكافئ الإهليلجي)

أو

(للسطح المكافئ الزائدي)

هناك نوعان من الأسطح المكافئة: الإهليلجية والزائدية. الإهليلجية يكون شكلها ككوب ويمكن أن يكون لها نقطة قيم صغرى أو كبرى. أما الزائدية فيكون شكلها كشكل سرج الحصان ولها نقطة حرجة يطلق عليها مسمى النقطة السرجية، تعد الأسطح الزائدية أسطحا مسطرة.

في حالة a تساوي b في المعادلة الأولى يسمى الشكل الناتج سطحا مكافئا دورانيا وهو الشكل الذي ينتج من دوران قطع مكافئ حول محوره.[1][2][3] يستخدم الشكل لتكوين بعض المرايا أو الأطباق اللاقطة. يسمى الشكل أيضا بالسطح المكافئ الدائري.

هندسة العمارة

[عدل]

من بين الامثلة للقباب بسطح مكافئ اهليجي، القبة التي بناها المهندس جيانبيرو كاستيلوتشي في الفترة : 1978-1980. والتي تغطي صالة كبيرة متعددة الأغراض للأنشطة الرياضية، مصممة لاستيعاب 2000 شخص جالس.[4]

السطح المكافئ، في الهندسة الوصفية, يشير إلى سطح ثنائي ذو راسم مكافئ، والذي وفقا لنوع دالته المخروطية (قطع ناقص, مكافئ أو زائد), يمكن ان يكون بالتوالي مكافئ اهليجي (انظر المثال المرفق) أو مكافئ أو مكافئ زائدي.[5]

معرض صور

[عدل]

انظر أيضًا

[عدل]

مراجع

[عدل]
  1. ^ Scoutisme de Baden-Powell. نسخة محفوظة 09 ديسمبر 2017 على موقع واي باك مشين.
  2. ^ Thomas، George B.؛ Maurice D. Weir؛ Joel Hass؛ Frank R. Giordiano (2005). Thomas' Calculus 11th ed. Pearson Education, Inc. ص. 892. ISBN:0-321-18558-7.
  3. ^ Thomas، George B.؛ Maurice D. Weir؛ Joel Hass؛ Frank R. Giordiano (2005). Thomas' Calculus 11th ed. Pearson Education, Inc. ص. 896. ISBN:0-321-18558-7.
  4. ^ La più grande cupola a paraboloide ellittico in laterocemento mai realizzata nel mondo. Ing. Gianpiero Castellucci. 1978-1980 نسخة محفوظة 2020-10-09 على موقع واي باك مشين.
  5. ^ conical and pyramidal approximation of an elliptical paraboloid نسخة محفوظة 13 أكتوبر 2021 على موقع واي باك مشين.