العدد الطبيعي في الرياضيات، هو كل عدد صحيح موجب، مثل 1، 2، 3... 12، 563. ويضيف بعض العلماء الصفر[ا] إلى هذه المجموعة من الأعداد. يرمز لمجموعة الأعداد الطبيعية بالحرف اللاتيني N.
و هي مجموعة أعداد غير منتهية. يمثل الواحد 1 أصغر الأعداد الطبيعية التي لا تتضمن الصفر ℕ*، بينما يمثل الصفر 0 أصغر الأعداد في مجموعة الأعداد الطبيعية التي تتضمن الصفر ℕ0، ويتم إنشاؤها بواسطة علاقة الترجع:
كل عدد طبيعي له موال وهو أيضا عدد صحيح طبيعي، 1 عدد صحيح طبيعي.[1]
أي: «1 عدد طبيعي، وإذا كان عدداً طبيعياً، فإن عدد طبيعي أيضاً».
وكل مجموعة مرتبة تخضع لأكسيومات بيانو تسمى مجموعة أعداد طبيعية. ويُرمز إلى هذه المجموعة ب N أو يرمز إليها ب *N إذا حذف منها الصفر. بعض الرياضيين لا يعتبرون الصفر عددا صحيحا طبيعيا.
ومن خصائصها الجبرية: الانغلاق بعمليتي الجمع والضرب
التجميعة، الضرب عملية تجميعية: c × (b × a) = (c × b) × a.
التبادلية، الجمع عملية تبديلية في مجموعة الأعداد الطبيعية: تغيير مكان الطرفين في العملية لا يغير النتيجة:a + b = b + a. الضرب عملية تبديلية في مجموعة الأعداد الطبيعية: تغيير مكان الطرفين في العملية لا يغير النتيجة: a × b = b × a.
وجود العناصر المحايدة، صفر هو العنصر الحيادي لعملية الجمع في مجموعة الأعداد الطبيعية: النتيجة (أو الحاصل) بعد جمع عدد وصفر هو نفس العدد. a + 0 = a. الواحد (1) هو العنصر المحايد لعملية الضرب في مجموعة الأعداد الطبيعية: النتيجة (أو الحاصل) بعد ضرب عدد وواحد هو نفس العدد. a × 1 = a.
توزيعية عملية الضرب على عملية الجمع في مجموعة الأعداد الطبيعية:a × (b + c) = a × b + a × c
لا وجود لقواسم الصفر، إذا كان a و b عددين طبيعيين حيث 0 = a × b فإن a = 0 أو b = 0..
¤ الأعداد الطبيعية تكتب من دون فاصلة /./ ومن دون كسر 1/3
ملاحظة: لم يعتبر العديد من علماء الرياضيات الإغريق الواحد عددا. فبالنسبة إليهم، اثنان هو أصغر عدد.
في البدايات مُثِلَت الأرقام الطبيعية عن طريق وضع علامة للشيء المعدود. منها تطور لمقارنة الأشياء المعدودة بأخرى لمعرفة الزيادة والنقصان أو المساواة - عن طريق حذف شيء وشطب علامته أو إضافة آخر مع علامة له وهكذا.[4][5]
شكل نظام العد خطوة هامة في تطور تمثيل الأرقام، لأنه مَكَّنَ الإنسان من تسجيل أعداد كبيرة.
فالمصريون القدماء كان لديهم نظام عد استخدم رموزا هيروغليفية مختلفة لتمثيل 1 و10 وجميع القوى من 10 لأكثر من 1مليون. فهناك نقش حجري في الكرنك يعود تاريخه إلى حوالي 1500قبل الميلاد (الآن في متحف اللوفر)، مثل فيه الرقم 276 كـ 2 من فئة المئات، و7 من فئة العشرات و 6 من فئة الآحاد. وبنفس الطريقة للرقم 4622.
لاحقا تطور نظام العد ليشمل تخصيص رمز للصفر باعتباره رقم. استخدام رقمللصفر في نظام القيمة الموضعية يعود للبابليين حوالي 700 ق. م.، حيث حذفوا هذا الرقم لو كان آخر رقم في العدد.[ب]
في العصر الحديث بدأ استخدام الصفر مع عالم الرياضيات الهندي براهماجوبتا حوالي 628 م. ولكن مع ذلك، استخدم ديونيسيوس الصغير في 525 مالصفر كرقم لحساب عيد الفصح، دون أن يُشار له كرقم (حيث لا تتضمن الأرقام الرومانية القياسية رمز الصفر). واستخدمت مكانه كلمة nulla (أو صيغة المضاف nullae) من nullus ، وتعني باللاتينية «لا شيء»، للإشارة لقيمة الصفر.[10]
أول دراسة منهجية للأرقام كمفهوم مجرد تُنسب عادة للفلاسفة اليونانيينفيثاغورسوأرخميدس. اعتبر بعض علماء الرياضيات اليونانيون أن الرقم 1 يختلف عن الأعداد الأكبر منه، وأحيانًا لا يعتبر كعدد.[ج] ، مثلًا عرّف إقليدس أولًا الوحدة
الوحدة شيء به يمتنع الموجود عن الانقسام إلى اشيآء تشاركه في تمام ذاتياته[12]
، وبالتالي وفقًا لتعريفه، فإن الوحدة (الرقم 1) ليست عددًا[د]، ويعرف العدد على أنه الكمية المؤلفة من الوحدات.[13]
في القرن التاسع عشر في أوروبا، كان هناك نقاش رياضي وفلسفي حول ماهية الأعداد الطبيعية. على سبيل المثال هنري بوانكاريه ممثلا للفلسفة الطبيعانية نَقَدَ تعريف الرياضيون (كـ فريجه، وديدكايند، وراسل) الأرقام منطقيًا لأنه سيؤدي لتناقضات والوقوع في فخ التعريفات الدائرية، بدلا من ذلك اعتبر أن الأرقام هي نتاج طبيعي للنفس البشرية وطبيعة الأشياء من حولنا[15]، وهي تتوافق مع رؤية كرونيكر، الذي قال «خَلَقَ الله الأعداد الصحيحة، غير ذلك من صنيع البشر».[ه]
بسبب انتقادات الطبيعانيين، رأي البنائيون (constructivists) الحاجة لتطوير أساس الرياضيات المنطقي ليصبح أكثر دقة.[و]
في ستينيات القرن التاسع عشر، اقترح جراسمان لأول مرة وباستخدام الاستقراء الرياضيتعريفًا ذاتيًا للأعداد الطبيعية، بدءًا بالصفر ثم مضيفا له واحد (قيمة سماها e) للحصول على الرقم التالي[18]، هو ما يعني بالتبعية أنها نتاج لاستخدام دالة الاستقراء f(n+1) المعرفة بدورها من الدالة الأولى f(0) وليست نتاج طبيعي بشكل تام.
بدأ فريجه تعريف الأرقام مستخدما نظرية المجموعات. في البداية عرَّفَ الرقم الطبيعي على أنه فئة جميع المجموعات التي تكون في تقابل واحد لواحد مع مجموعة معينة. ولكن أدى هذا التعريف لمفارقات، كمفارقة راسل. لتجنب ذلك، عُدِّلَ التعريف لينص على أن الرقم الطبيعي هو مجموعة بعينها، وأن أي مجموعة في تقابل واحد لواحد معها تحوي هذا العدد من العناصر.[19]
من بعد فريجه، قدم بيرس تعريفًا، وحَسَّنَهُ ديديكيند، وطوره بيانو بصورة أكبر فيما يعرف الآن بمسلمات بيانو. وهو يعتمد على مسلمات خصائص الأعداد الترتيبية: حيث كل رقم طبيعي له خَلَفْ وكل رقم طبيعي غير صفري له سَلَفْ متفرد. مسلمات بيانو مُكافِئَة للعديد من نظم نظرية المجموعات الضعيفة. أحد هذه الأنظمة هو ZFC مع استبدال بديهية اللانهاية (Axiom of infinity) بما ينفيها. نظرية جودشتاين (Goodstein's theorem) من النظريات التي يمكن إثباتها في ZFC ولا اثبات لها بمسلمات بيانو.[20]
يستخدم علماء الرياضيات الرمز N أو للإشارة إلى مجموعة الأعداد الطبيعية.[26][27] التي أسستها نظرية المجموعات. أحيانا استخدم الرمز J في الكتابات القديمة للإشارة لهذه المجموعة.[28]
ونظرًا لأن العنصرين 0 و 1 لهما خصائص مميزة (كعناصر محايدة للجمع والضرب، على التوالي)، فمن المهم معرفة نوع الأرقام الطبيعية المستخدم. يمكن ذلك عن طريق الشرح داخل النص (بكتابة عناصر المجموعة)، أو بوضع علامة علوية أو منخفضة،[29][30] كالمثال التالي:
الأعداد الطبيعية بدون الصفر:
الأعداد الطبيعية مع الصفر:
بشكل آخر ونظرًا لأن الأعداد الطبيعية تشكل طبيعيًا مجموعة جزئية من الأعداد الصحيحة (غالبًا ما يرمز لها بـ ), لذا يمكن الإشارة إليها على أنها الأعداد الصحيحة الموجبة أو غير السالبة.[31] لتوضيح إذا كان الرقم 0 مدرجًا أم لا، يتم أحيانًا إضافة حرف سفلي (أو علوي) "0" في الحالة الأولى (الأعداد الموجبة)، ويتم إضافة حرف علوي "*" في الحالة الأخيرة (غير السالبة):[29]
العدد الصحيح إن كان له نصف صحيح أي غير منكسر فزوج، كالعشرة، وإلا ففرد، كالثلاثة.
نقول أن عددان لهما نفس الزوجية سواء إذا كانا زوجيين معا أو فرديين معا.
ينتج عن عملية الجمع أو الطرح بين عددين لهما نفس الزوجية، عدد زوجي.
عدد زوجي + عدد زوجي = عدد زوجي، مثال: .
عدد فردي + عدد فردي = عدد زوجي، مثال: .
ينتج عن عملية الجمع أو الطرح بين عددين ليس لهما نفس الزوجية، عدد فردي.
عدد فردي + عدد زوجي = عدد فردي، مثال: .
ينتج عن عملية الضرب بين عددين زوجيين، عدد زوجي. مثال: .
ينتج عن عملية الضرب بين عددين فرديين، عدد فردي. مثال: .
ينتج عن عملية الضرب بين عدد زوجي وعدد فردي، عدد زوجي. مثال: .
عملية القسمة تتعلق بالبسط والمقام:
إذا كان البسط زوجياً والمقام فردياً سنحصل على عدد زوجي أو عدد كسري.
أمثلة: .
إذا كان البسط فردياً والمقام زوجياً سنحصل على عدد كسري دائماً.
أمثلة: .
إذا كان البسط والمقام زوجيين سنحصل على عدد زوجي أو عدد فردي أو عدد كسري.
أمثلة: .
إذا كان البسط والمقام فرديين سنحصل على عدد فردي أو عدد كسري.
كل خوارزمية تمكن من إيجاد جميع الأعداد الأولية الأصغر من عدد ما تسمى غربالا. أقدم مثال على ذلك غربال إراتوستينس لكنه لا يستعمل إلا في حالة الأعداد الصغيرة. غربال أتكين أحدث منه ولكنه أكثر منه تعقيدا ولهذا فهو أكثر منه سرعة.
لعملتي الجمع (+) والضرب (×) على الأعداد الطبيعية مجموعة من الخصائص الجبرية:
الانغلاق بعمليتي الجمع والضرب: مهما كان a و b عددين طبيعيين، فإن كلا من a + b و a × b هما عددان طبيعيان.
التجميعة، الجمع والضرب عمليتان تجميعيتان: مها كانت a و b و c أعدادا طبيعية، فإن a + (b + c) = (a + b) + c وa × (b × c) = (a × b) × c.
التبادلية، الجمع والضرب عمليتان تجميعيتان في مجموعة الأعداد الطبيعية: تغيير مكان الطرفين في العملية لا يغير النتيجة:a + b = b + a وa × b = b × a.
وجود العناصر المحايدة، صفر هو العنصر الحيادي لعملية الجمع في مجموعة الأعداد الطبيعية: النتيجة (أو الحاصل) بعد جمع عدد وصفر هو نفس العدد. a + 0 = a. الواحد (1) هو العنصر المحايد لعملية الضرب في مجموعة الأعداد الطبيعية: النتيجة (أو الحاصل) بعد ضرب عدد وواحد هو نفس العدد. a × 1 = a.
توزيعية عملية الضرب على عملية الجمع في مجموعة الأعداد الطبيعية:a × (b + c) = a × b + a × c
لا وجود لقواسم الصفر، إذا كان a و b عددين طبيعيين حيث 0 = a × b فإن a = 0 أو b = 0.
طريقة لتحديد المضاعف المشترك الأصغر للعددين a و b حيث a>b
أحدد مضاعفات a ثم أتآكد بالتتابع ابتداء من أصغر مضاعف غير منعدم للعدد a هل هو مضاعف للعدد b، فإذا آان الجواب لا، أتابع البحث إن آان نعم، أتوقف والعدد الذي حصلت فيه على هذا الجواب هو المضاعف المشترك الأصغر للعددين a و b.
طريقة لتحديد القاسم المشترك الآكبر للعددين a و b حيث a>b
أحدد قواسم العدد b ثم أتآكد بالتتابع تناقصيا ابتداء من أكبر قاسم للعدد b هل هو قاسم للعدد a فإذا آن الجواب لا، أتابع البحث ان كان نعم، أتوقف والعدد الذي حصلت فيه على هذا الجواب هو القاسم المشترك الأكبر للعددين a و b.
طريقة لتحديد ما إذا كان العدد a أوليا أم لا
نحدد أولا جميع الأعداد الأولية p حيث p×p<a
-إذا كان a يقبل القسمة على أحد هذه الأعداد فان a غير أولي
-إذا كان a لا يقبل القسمة على أي عدد من هذه الأعداد فان a أولي
تملك الأشياء والحيوانات خاصية مشتركة: في سلة ما، كلّ التفاحات منفصلة وتتشابه بعض الشيء. في قطيع غنم، تتشابه الحيوانات وهي منفصلة.
لذا ظهرت أشياء لا توجد في الحقيقة، يمكن تغيير أمكانها في ما بينها. هي أشياء لا علاقة لها بالحقيقة، لا توجد إلاّ في الخيال. لذا سنكتب «واحد 1» «اثنان 2» «ثلاثة 3»... ثلاثة ماذا؟ ثلاثة من هذه الأشياء التي اخترعناها ولا وجود لها، ثلاثة «وحدات».
و لو افترضنا أنّ أ هو عدد التفاحات وج هو عدد الأغنام، هذان العنصران يمكن التعامل معهما رياضيًّا مهما كانت الأشياء التي تمثلها.
لقد وجدنا إذا خاصية مهمّة وهي خاصية المجموعات العدودة) ولقد اخترعنا عدادا خياليا لا يملك إلا هذه الخاصية. وهذا الشيء هو الوحدة.
يُدعى هذا التمرين الفكري التجريد. نُجرّد الشيء من صفته ليصبح كميّة فقط.
العدد المثالي هو عدد طبيعي يساوي مجموع قواسمه بما فيها 1، اكتشف ما يزيد على 40 عدد زوجي مثالي (أصغر عدد زوجي مثالي هو 6 حيث 6 = 1+2+3)، ولا يعرف أيوجد عدد فردي مثالي أم لا؟ عدد مثل هذا يجب أن يكون أكبر من .
تحليل العدد الصحيح هو عملية تفكيكه إلى جداء عوامله الأولية، أي كتابة هذا العدد على شكل جداء أعداد أولية، بحيث يكون حاصل ضربها مساوٍ للعدد الأصلي. مثلا: تحليل العدد 45 هو 32·5.
^عُثِرَ على لوحة في كيش يعتقد أنها تعود لحوالي 700 ق. م. نُقِشَ عليها ثلاثة خططاطيف للدلالة على مكان خالٍ في نظام الموضع. ألواح أخرى تعود لنفس الفترة استخدمت خطاف واحد للدلالة على خلو المكان.[7]
^على سبيل المثال نرى هذا التقليد مستخدما في إقليدوس, طالع نسخة D. Joyce's على الويب من الكتاب السابع، التعريف الأول والثاني.[11]
^على الرغم من ذلك ففي كتاب تحرير أصول لأوقليدوس، وفي التعريف الثاني يعرف العدد على أنه: "العدد هو الكمية المتالفة من الوحدات ويقال العدد على الواحد من حيث هو واقع في مراتب العدد"، ولكن في نص إقليدس الأصلي لا ينص التعريف الثاني على أن الوحدة عدد
^الترجمة الإنجليزية لهذا الاقتباس تعود إلى Gary وهو بدوره يرجع الاقتباس الألماني إلى "Weber 1891–1892, 19, مقتبسًا من محاضرة لكرونيكر في عام 1886.".[16][17]
^"معظم الانتاج الرياضي في القرن العشرين توجه صوب فحص الأساس المنطقي للأشياء وبنيتها." (Eves 1990, p. 606)
^"خط الأعداد". web.archive.org. 9 مارس 2019. مؤرشف من الأصل في 2020-04-05. اطلع عليه بتاريخ 2019-03-14.{{استشهاد ويب}}: صيانة الاستشهاد: BOT: original URL status unknown (link)
^Georges Ifrah: From on to zero, A Universal History of numbers, translated by Lowell Bair, Penguin books, 1988 (انظر المقدمة والفصول الأولى المحتوية على تفصيلات كثيرة وأبحاث عن هذا الموضوع)
^Karl Menninger: Number words and number symbols, A cultural history of numbers, translated by Paul Broneer, Dover publications 1992 (طالع على سبيل المثال الفصول Finger Counting, و Tally Sticks)
^نصير الدين الطوسي: كتاب تحرير اصول لاوقليدوس، ص 168 (رابط)
^Mueller، Ian (2006). Philosophy of mathematics and deductive structure in الأصول. Mineola, New York: Dover Publications. ص. 58. ISBN:978-0-486-45300-2. OCLC:69792712.
^Goldfarb, W. 1979. 1988. ‘‘Poincare´ Against the Logicists,’’ in History and Philosophy of Modern Mathematics, ed. W. Aspray and P. Kitcher, Minnesota Studies in the Philosopy of Science, 11, Minneapolis, University of Minnesota Press, pp. 61–81.
^Kirby، Laurie؛ Paris، Jeff (1982). "Accessible Independence Results for Peano Arithmetic". Wiley. ج. 14 ع. 4: 285–293. DOI:10.1112/blms/14.4.285. ISSN:0024-6093.
^Bagaria، Joan (2017). Set Theory (ط. Winter 2014). The Stanford Encyclopedia of Philosophy. مؤرشف من الأصل في 2015-03-14. اطلع عليه بتاريخ 2015-02-13.