في علم الرياضيات، بافتراض وجود فضاء متجهي , فإن المجموعة تكون شعاعية عند النقطة إذا كان لكل يوجد أي لكل , .[1] في رمز المجموعة، تكون شعاعية عند النقطة إذا
تكون مجموعة كل النقاط التي تكون عندها شعاعية مساوية للداخل الجبري.[1][2] ويشار إلى النقاط التي تكون المجموعة عندها شعاعية غالبًا بالنقاط الداخلية.[3][4]
إن المجموعة هي مجموعة ماصة إذا إذا وإذا فقط كانت شعاعية عند 0.[1] يستخدم بعض المؤلفون التعبير شعاعي بوصفه مرادفًا للماص، أي أنهم يطلقون على المجموعة بالشعاعية إذا كانت شعاعية عند 0.[5]
{{استشهاد بدورية محكمة}}
: الاستشهاد بدورية محكمة يطلب |دورية محكمة=
(مساعدة)