পাটীগণিত (গ্ৰীক: Αριθμητική, জাৰ্মান: Arithmetik; ইংৰাজী: Arithmetic) হৈছে গণিতৰ তিনিটা বিশেষ শাখাৰ অন্যতম অংক তথা সংখ্যা গণনাৰ সৈতে জড়িত শাখা। ই গণিতৰ মৌলিক শাখা তথা ইয়াৰ পৰাই গণিত শিক্ষাৰ আৰম্ভণি হয়। প্ৰতিজন ব্যক্তিয়েই তেওঁৰ দৈনন্দিন জীৱনত পাটীগণিতৰ ব্যৱহাৰ কৰি আহিছে। যোগ, বিয়োগ, পূৰণ, হৰণ, দশমিক ইত্যাদি পাটিগণিতৰ অন্যতম কিছুমান প্ৰক্ৰিয়া।
কিছু ইতিহাসবিদসকলৰ মতে মানুহে পূৰ্বৰ পৰাই সামাজিক জীৱ হিচাপে পৰিচয় দি আহিছে তথা আগতে দল বান্ধি বাস কৰিছিল। সেই দলসমূহৰ মানুহৰ পৰিমাণ, বৃদ্ধি আৰু কমি যোৱা আদি গণনা কৰিবলৈ তেওঁলোকক অংকৰ প্ৰয়োজন হৈছিল। এই অংক গণনাৰ বাবে মানুহে নিজৰ আঙুলিবোৰকেই আধাৰ হিচাপে লৈছিল।[1] অংকৰ ইতিহাস সম্পৰ্কে নিচেই কম তথ্য পোৱা যায়। কিছুমানৰ মতে ১৮৫০ চনতো বেবিলনৰ নিবাসীসকল গণিতৰ প্ৰাৰম্ভিক প্ৰক্ৰিয়াৰে ভালদৰে পৰিচিত আছিল। ভাৰতত পাটিগণিতৰ জ্ঞান অতি প্ৰাচীন কালৰে পৰা প্ৰচলিত হৈ আহিছে আনকি বেদসমূহতো গণিতীয় প্ৰক্ৰিয়াৰ প্ৰয়োগ পোৱা যায়। শূন্য (০) ভাৰতৰে আবিষ্কাৰ।
অংক,ইংৰাজীৰ Digit হৈছে কিছুমান সংখ্যাবোধক চিন। অংক ৯ টা:- ১,২,৩,৪,৫,৬,৭,৮ আৰু ৯। ইহঁতৰ কোনো পাৰ্থিৱ অথবা অপাৰ্থিৱ ৱস্তু আদিৰ অস্তিত্ব বুজাব পৰা ক্ষমতা আছে। সংখ্যাবোধক নহয় অথচ নিজৰ অস্তিত্ব প্ৰতিপন্ন কৰিব পৰা চিহ্ন '০' ৰ সৈতে লগ লাগি অংকবোৰে অন্য সংখ্যাবোৰৰ সৃষ্টি কৰে। অংকবোৰক প্ৰাথমিক সংখ্যা বুলিব পাৰি। সাধাৰণ অৰ্থত হিচাপ সম্পৰ্কীয় সংখ্যাৰ সমাধান বিচৰা পদ্ধতিক অংক বোলে। অংকই গণিতৰ মূল। দৈনিক জীৱনৰ অধিকাংশ ক্ষেত্ৰত অংকৰ প্ৰয়োগ হয়।
সংখ্যা, ইংৰাজীৰ Number হ’ল বাস্তৱ জগতৰ (real world) বস্তুবোৰৰ পৰিমাণক প্ৰতিকাত্মক ৰূপত প্ৰকাশ কৰাৰ পদ্ধতি। সংখ্যাবোৰ প্ৰকাশ কৰিবলৈ ব্যৱহাৰ কৰা চিহ্ন বোৰ অংক। অংক কেৱল দহটা কিন্তু সংখ্যা অসীম। সংখ্যাৰ বৈশিষ্ট্য অনুসৰি সিহঁতক বিভিন্ন ভাগত ভাগ কৰা হয়:-
স্বাভাৱিক সংখ্যা | ১, ২, ৩, ৪, ... বা 1, 2, 3, 4, ... | |
---|---|---|
অখণ্ড সংখ্যা | ..., −৫, −৪, −৩, −২, −১, ০, ১, ২, ৩, ৪, ৫, ... | |
ধনাত্মক অখণ্ড সংখ্যা | ১, ২, ৩, ৪, ৫, ... | |
ঋণাত্মক অখণ্ড সংখ্যা | -১, -২, -৩, -৪, -৫,... | |
পূৰ্ণ সংখ্যা | ০, ১, ২, ৩, ৪, ... | |
পৰিমেয় সংখ্যা | a⁄b য’ত a আৰু b হ’ল অখণ্ড সংখ্যা আৰু b ৰ মান শূন্য নহয় | |
বাস্তৱ সংখ্যা | The limit of a convergent sequence of rational numbers | |
জটিল সংখ্যা | a + bi য’ত a আৰু b প্ৰকৃত সংখ্যা আৰু i হ’ল বৰ্গমূল −1 |
পাটীগণিতৰ প্ৰধান চাৰিটা প্ৰক্ৰিয়া আছে:- যোগ বিয়োগ গুণ বা পূৰণ আৰু ভাগ বা হৰণ।
যোগ ইংৰাজীৰ Additionক "+" চিহ্নৰ দ্বাৰা সূচিত কৰা হয়। ই হ'ল দুই বা ততোধিক সংখ্যা লগ লাগি হোৱা মুঠ পৰিমাণক প্ৰকাশ কৰা এক গানিতিক প্ৰক্ৰিয়া। যেনে: ২ আৰু ৩ যোগ কৰিলে ৫ হয়। অৰ্থাৎ ২টা বস্তু আৰু ৩টা বস্তু মিলি ৫টা বস্তু হয়। যোগৰ ধৰ্ম:
ব্ৰহ্মগুপ্ত ই তেওঁৰ ব্ৰহ্মস্ফুটসিদ্ধান্ত গ্ৰন্থত প্ৰথম এই সু্ত্ৰটি লিপিবদ্ধ কৰিছিল।
বিয়োগ হ'ল দুটা সংখ্যাৰ মাজত থকা পাৰ্থক্য নিৰ্ণয় কৰাৰ এটা গাণিতিক পদ্ধতি। যেনে ৭ - ২ = ৫। অৰ্থাৎ সাতৰ পৰা দুই বাদ দিলে হয় পাঁচ। ইয়াত আমি এটা ডাঙৰ সংখ্যাৰ পৰা সৰু সংখ্যা বিয়োগ কৰাত এটা ধনাত্মক পূৰ্ণসংখ্যা পালোঁ কিন্তু যদি আমি এটা সৰু সংখ্যাৰ পৰা ডাঙৰ সংখ্যা বিয়োগ কৰোঁ তেন্তে আমি এটা ঋণাত্মক পূৰ্ণ সংখ্যা পাম। যেনে: ৫ - ১৬ = -১১।
গুণ বা পূৰণ হ'ল দুই বা ততোধিক সংখ্যাৰ মাজত এক প্ৰকাৰৰ গাণিতিক ক্ৰিয়া। ই প্ৰাথমিক অঙ্কশাস্ত্ৰৰ চাৰিটা মৌলিক ক্ৰিয়াৰ অন্যতম। গুণক বা পুৰণক প্ৰায়ে ক্ৰছ চিহ্ন "×" দ্বাৰা সূচিত কৰা হয়। ইয়াক পুৰণত ব্যৱহৃত সংখ্যা সমূহৰ অভ্যন্তৰত লিখা হয়। কম্পিউটাৰত এই ক্ষেত্ৰত তৰাচিহ্ন "∗" বহুৱাইয়ো গুণ ক্ৰিয়া নিৰ্দেশ কৰিব পৰা যায়।
দুটি পূৰ্ণ সংখ্যাৰ গুণক পৌনঃপৌণিক যোগ ক্ৰিয়া হিচাপে কল্পনা কৰা যায় অৰ্থাৎ দুটা পূৰ্ণ সংখ্যা "ক" আৰু "খ"-ৰ মাজত গুণ হ'লে "ক"-ৰ যি সংখ্যামান আছে, "খ"-ক তাৰ নিজৰ সৈতে সিমান সংখ্যক বাৰ যোগ কৰা হয়। ইয়াত "ক"-ক গুণক আৰু "খ"-কে 'গুণনীয় বোলা হয়। গুণ ক্ৰিয়াৰ ফলাফলক গুণফল বোলা হয়। "ক" আৰু "খ"-ক এই গুণফলৰ গুণনীয়ক বা উৎপাদক- বোলা হয়।
উদাহৰণস্বৰূপে, ৪-ক ৩ ৰে গুণ কৰাৰ সময়ত ৪-ৰ তিনটা অনুলিপি যোগ কৰি গুণফল নিৰ্ণয় কৰা সম্ভৱ:
৪ × ৩ = ৪ + ৪ + ৪ = ১২
ইয়াত ৩ (গুণক) আৰ ৪ (গুণনীয়) হ'ল গুণনীয়ক বা উৎপাদক আৰু ১২ হ'ল গুণফল।
গুণৰ প্ৰধান এটা ধৰ্ম হ'ল- ইয়াৰ বিনিময়যোগ্যতা। ৩-ক ৪ ৰে গুণ কৰিলে নতুবা ৪-ক ৩ ৰে গুণ কৰোলে একেই গুণফল পোৱা যাব।[3]
৩ × ৪ = ৩ + ৩ + ৩ + ৩ = ১২
অৰ্থাৎ গুণক বা গুণনীয় অভিধা সমূহে গুণফলৰ কোনো পৰিৱৰ্তন নকৰে।
হৰণ (÷) হ’ল এটি পাটীগণিতীয় তথা বীজগণিতীয় ক্ৰিয়া (operation)। ইয়াক '÷' চিহ্নৰ দ্বাৰা প্ৰকাশ কৰা হয়। যদিহে cৰ bগুণ a ৰ সমান হয়, তেন্তে:
ইয়াত b যদি অশূন্য হয়, তেন্তে a ক b ৰে হৰণ কৰা বুলিলে c পোৱা যায় আৰু ইয়াক তলত দিয়া ধৰণে লিখা হয়:
উদাহৰণস্বৰূপে,
কাৰণ
a ÷ b = c ৰাশিটোত, a ক ভাজ্য বা লৱ, b ক ভাজক বা হৰ আৰু c ক ভাগফল বোলা হয়।
হৰণৰ লগত দুটা পৃথক অথচ পৰস্পৰ সম্পৰ্কীত ধাৰণা যুক্ত হৈ আছে: বিভাজন'' (Partitioning) আৰু ভাগফল (Quotative)। a মাত্ৰাৰ এটা থুপক b সংখ্যক সমান সমান ভাগত ভাগ কৰিলে একোটা ভাগৰ মাত্ৰা যদি c হয়, তেন্তে a ৰ পৰা b ৰ হৰণফল হ’ব c। আৰু a মাত্ৰাৰ এটা থুপক c মাত্ৰাৰ থুপলৈ ভাগ কৰিলে থুপৰ সংখ্যা b হ’লে a ৰ পৰা c ৰ হৰণফল হ’ব b।[4]
|