Númberu de Reynolds | |
---|---|
número índice (es) | |
número característico (es) y dimensionless number in fluid mechanics (en) | |
El númberu de Reynolds (Re) ye un númberu adimensional utilizáu en mecánica de fluyíos, diseñu de reactores y fenómenos de tresporte pa carauterizar el movimientu d'un fluyíu. El so valor indica si'l fluxu sigue un modelu llaminar o aturbolináu.
El conceutu foi introducíu por George Gabriel Stokes en 1851,[2] pero'l númberu de Reynolds foi nomáu por Osborne Reynolds (1842-1912), quien popularizó'l so usu en 1883.[3][4] En bioloxía y en particular en biofísica, el númberu de Reynolds determina les rellaciones ente masa y velocidá del movimientu de microorganismos nel senu d'un líquidu carauterizáu por cierto valor de dichu númberu (líquidu que polo común ye agua, pero puede ser dalgún otru fluyíu corporal, por casu sangre o linfa nel casu de diversos parásitos mótiles y la orina nel casu de los mesozoos) y afecta especialmente a los qu'algamen velocidaes relativamente alzaes pal so tamañu, como los ciliaos predadores.[5] Pa los desplazamientos na agua d'entidaes de tamañu y masa entá mayor, como los pexes grandes, aves como los pingüinos, mamíferos como foques y orques, y por cierto los navíos submarinos, la incidencia del númberu de Reynolds ye enforma menor que pa los microbios rápidos.[6] Cuando'l mediu ye l'aire, el númberu de Reynolds del fluyíu resulta tamién importante pa inseutos voladores, aves, esperteyos y microvehículos aéreos, siempres según la so respeutiva masa y velocidá.[7]
El númberu de Reynolds puede definise como la rellación ente les fuercies inerciales (o convectivas, dependiendo del autor) y les fuercies mafoses presentes nun fluyíu. Ésti rellaciona la densidá, mafa, velocidá y dimensión típica d'un fluxu nuna espresión adimensional, qu'intervien en numberosos problemes de dinámica de fluyíos. Dichu númberu o combinación adimensional apaez en munchos casos rellacionáu col fechu de que'l fluxu pueda considerase llaminar (númberu de Reynolds pequeñu) o aturbolináu (númberu de Reynolds grande).
Pa un fluyíu que circula pel interior d'una tubería circular recta, el númberu de Reynolds vien dau por:
o equivalentemente por:
onde:
velocidá carauterística del fluyíu :: diámetru de la tubería al traviés de la cual circula'l fluyíu o llargor carauterísticu del sistema :: mafa dinámica del fluyíu :: mafa cinemática del fluyíu (m²/s)
Como tou númberu adimensional ye un cociente, una comparanza. Nesti casu ye la rellación ente los términos convectivos y los términos mafosos de les ecuaciones de Navier-Stokes que gobiernen el movimientu de los fluyíos.
Por casu, un fluxu con un númberu de Reynolds alredor de 100 000 (típicu nel movimientu d'una aeronave pequeña, salvu en zones próximes a la capa llende) espresa que les fuercies mafoses son 100.000 vegaes menores que les fuercies convectivas, y polo tanto aquelles pueden ser inoraes. Un exemplu del casu contrariu sería un cojinete axial lubricado con un fluyíu y sometíu a una cierta carga. Nesti casu'l númberu de Reynolds ye enforma menor que 1 indicando qu'agora les fuercies dominantes son les mafoses y polo tanto les convectivas pueden despreciase.
Otru exemplu: Nel analís del movimientu de fluyíos nel interior de conductos apurre una indicación de la perda de carga causada por efeutos mafosos.
Amás el númberu de Reynolds dexa predicir el calter aturbolináu o llaminar en ciertos casos.
En conductos o tuberíes (n'otros sistemes, varia'l Reynolds llende):
Según otros autores:
N'inxeniería aeronáutica el fluxu sobre la capa llende de la corriente d'aire ye por demás importante:[8]
La transición asocede de normal pa valores de númberu de Reynolds ente mediu millón y 10 millones y va producise antes o dempués dependiendo en gran midida de la rugosidad de la superficie, de la superficie, de la turbulencia de la corriente llibre d'aire y de la distribución de presiones.
Amás, sabemos que'l númberu de Reynolds depende de la dimensión carauterística del oxetu que se mueve nel fluyíu, per ende podemos considerar lo siguiente:
De toes formes, podemos considerar la laminaridad de la capa llende cuando:
En problemes onde'l fluyíu consideráu ye l'agua, demostróse por aciu esperimentación en llaboratoriu qu'ente un númberu de Reynolds de 2.000 a 3.000 atópase la etapa de transición llaminar-aturbolináu nel fluxu de la capa llende.
Sicasí, pa efeutos práuticos considérase: