Күпҡыр | |
![]() | |
Алдағы | күпмөйөш |
---|---|
Тәртип буйынса һуңыраҡ килеүсе | многоячейник[d] |
Ҡайҙа өйрәнелә | стереометрия[d] |
Грань политопа | грань[d] |
Модель элементы | правильный додекаэдр[d], малый звёздчатый додекаэдр[d] һәм восьмиугольная призма[d] |
Вики-проект | Проект:Математика[d] |
![]() |
Күпҡыр йәки полиэдр — ғәҙәттә күпмөйөштәрҙән төҙөлгән йомоҡ йөҙ, ләкин ҡайһы берҙә был йөҙ менән сикләнгән есем дә атала.
Күпҡыр, теүәлерәк өс үлсәмле күпҡыр — өс үлсәмле Евклид арауығындағы сикле һандағы шундай яҫы күпмөйөштәр йыйылмаһы, бында:
Был күпмөйөштәр күпҡырҙың ҡырҙары тип, ә уларҙың яҡтары — ҡабырғалары, түбәләре — күпҡырҙың түбәләре тип атала[1].
Күпҡырға иң ябай миҫал булып ҡабарынҡы күпҡыр, йәғни Евклид арауығының сикле һандағы ярымарауыҡтар киҫелеше булған шундай сикле аҫкүмәклеге сиге тора.
Күпҡырҙың килтерелгән билдәләмәһе, күпмөйөш төшөнсәһенә ниндәй билдәләмә биреүгә бәйле, төрлө мәғәнә ала. Уның өсөн ошондай варианттар мөмкин:
Беренсе осраҡта беҙ йондоҙло күпмөйөш төшөнсәһе алабыҙ. Икенсеһендә — күпҡыр ул күпмөйөшлө киҫәктәрҙән төҙөлгән йөҙ. Әгәр был йөҙ үҙен үҙе киҫмәһә, ул саҡта ул ниндәйҙер геометрик есемдең тулы йөҙө, ул да күпҡыр тип атала.Ошонан сығып күпҡырҙың, үҙе геометрик есем булараҡ, дүртенсе билдәләмәһе килеп сыға.
n ҡыры булған күпҡыр n-ҡыр тип атала. Айырып әйткәндә, тетраэдр — дүртҡыр, додекаэдр — ун икеҡыр, икосаэдр — егермеҡыр Ҡалып:Һ. б. ш.
Күпҡыр, әгәр ул һәр ҡырының яҫылығынан бер яҡта ятһа, ҡабарынҡы тип атала.
Ҡабарынҡы күпҡыр өсөн Эйлер теоремаһы дөрөҫ: В + Г − Р = 2, бында В— күпҡырҙың түбәләре һаны, Г— ҡырҙары һаны, Р— ҡабырғалары һаны.