Нільс Гэнрык Абэль | |
Niels Henrik Abel | |
Адзіны існуючы партрэт Абэля (1824) | |
Дата нараджэньня | 5 жніўня 1802[1][2][3][…] |
---|---|
Месца нараджэньня | Фінгё, Нарвэгія |
Дата сьмерці | 6 красавіка 1829[4][2][3][…] (26 гадоў) |
Месца сьмерці | Фролянд, Нарвэгія |
Прычына сьмерці | сухоты |
Месца вучобы | Каралеўскі ўнівэрсытэт імя Фрэдэрыка |
Занятак | матэматык, прафэсар унівэрсытэту |
Навуковая сфэра | матэматыка |
Месца працы | |
Вядомы як | дасьледчык альгебраічных праблемаў, элептычных функцыяў |
Сябра ў | Каралеўскае нарвэскае таварыства навукі і літаратуры[d] |
Бацька | Søren Georg Abel[d] |
Узнагароды | |
Подпіс | |
Нільс Гэнрык Абэль (па-нарвэску: Niels Henrik Abel; 5 жніўня 1802, Фінгё, Нарвэгія — 6 красавіка 1829, Фролянд, Нарвэгія) — вядомы нарвэскі матэматык.
Нарадзіўся ў беднай вясковай сям’і пастара ў 1802 годзе ў мястэчку Фінгё. Зь дзяцінства выяўляў вялікія здольнасьці, але беднасьць сям’і не дазволіла атрымаць сыстэматычную адукацыю. Зь вялікаю цяжкасьцю паступіў ва ўнівэрсытэт у сталіцы Нарвэгіі Хрыстыяніі (цяпер Осьлё), але ўнівэрсытэт ня меў матэматычнага факультэту, а Абэль ужо цікавіўся матэматыкай. Таму, будучы студэнтам ўнівэрсытэту, ён вывучаў матэматыку самастойна.
У 1823 годзе ён напісаў дасьледаваньне (як потым апынулася - памылковае) пра разьвязваньне раўнаньня 5 ступені ў радыкалах. Але калі памылка высьвятлілася, Абэль працаваў над гэтай тэмай і даказаў, што раўнаньня 5 ступені ня маюць агульнага разьвязваньня. Гэтая праца ды сачыненьне пра інтэграваньне альгебраічных выразаў далі яму магчымасьць атрымаць стыпэндыю на замежную паездку. Сама праца была перададзеная Гаўсу, але той аднёсься з прадузятасьцю і ня даў рэцэнзію. За мяжой Абэль спачатку жыў у Бэрліне зь верасьня 1825 году па люты 1826 году, дзе пазнаёміўся з выдаўцом «Journal für die reine und angewandte Mathematik» Крэлем, які дапамог выдаць творы.
У 1826 годзе Абэль зьехаў у Парыж, і прадставіў там працу «Мэмуар пра адзін вельмі шырокую клясу трансцэндэнтных функцыяў». Гэтае дасьледаваньне інтэгралаў , дзе — адвольная рацыянальная функцыя аргумэнтаў і , а — альгебраічная функцыя аргумэнта . Гэтыя інтэгралы пазьней атрымалі назву абэлевых. Асабліва вылучаны выпадак як квадратны корань з палінома 3 ці 4 ступені, ў якім інтэграл зводзіцца да эліптычнага, і выпадак квадратнага кораня з палінома ступені больш за 4, ў якім інтэграл зводзіцца да гіпэрэліптычных. Праца доўга ляжала ў Кашы, згубілася сярод папераў, і была апублікаваная толькі пасьля сьмерці Абэля ў 1841 годзе.
У 1927 годзе з-за сталай галечы і грэбаваньня з боку славутых навукоўцаў, Абэль вяртаецца ў Бэрлін, а потым у Хрыстыянію. Былым, паводле ягоных слоў, «бедным як царкоўная мыш», ён зарабляе прыватнымі ўрокамі. У 1828 годзе ён атрымаў месца намесьніка выкладчыка ва ўнівэрсытэце, але ўжо хварэў на сухоты. Памёр 6 красавіка 1829 году.
Заснавальнік тэорыі эліптычных і альгебраічных функцыяў. У 1823 годзе Абэль дасьледуе абарачэньне эліптычных інтэгралаў, што стала ключом да адкрыцьця эліптычных функцыяў. У 1824 годзе ім была выраблена тэарэма пра лемініскату, доказ невырашальнасьці раўнаньняў вышэй за 4 ступень у радыкалах. У 1825 годзе навуковец першым заўважыл шматкратную пэрыядычнасьць гіпэрэліптычных інтэгралаў. У 1826 годзе ўдакладніў і абагульніў тэарэму Кашы пра зьбежнасьць здабытка ступеневых шэрагаў. Пры доказы Абэль карыстаўся лягарытмічнымі прынцыпамі, яшчэ ня ведаючы іх.
Абэль таксама працаваў над поўным дасьледаваньнем умоваў зьбежнасьці на камплекснай плоскасьці. У 1827 годзе ім была зроблена фундамэнтальная праца пра функцыі чыста ўяўнага аргумэнта, функцыі камплекснай зьменнай, пашырыў пераўтварэньне Лежандра, адкрыў камплекснае множаньне. У 1828 годзе Абэль прывёў гіпэрэліптычныя інтэгралы да трох родаў. Даказаў агульную тэарэму пра прыводнасьць сумы абэлевых інтэгралаў з аднольнавымі падынтэгральнымі функцыямі, ліміты якіх зьвязаныя альгебраічнымі суадносінамі, да вызначанага ліку такіх інтэгралаў, а потым дэталёва разглядзеў тэарэму для гіпэрэліптычных функцыяў і адной клясы двухскладаў. Распаўсюдзіў на агульныя альгебраічны інтэграл тэарэму пра перастановы аргумэнта і парамэтра, адкрытую для эліптычных функцыяў.
Вывучаў клясу рознасных раўнаньняў — па сутнасьці нармальных раўнаньняў з камутатыўнай групай Галюа. Ён даказаў шэраг тэарэмаў па тэорыі Галюа. Фактычна, не ўводзячы панятку групы, ён дасьледаваў тэорыю камутатыўных групаў, якія пазьней атрымалі назву абэлевых.
У працы «Дасьледаваньне шэрага , дзе і - любыя камплексныя лікі» ён прывёў дзьве выдатныя тэарэмы: