Гэты артыкул патрабуе ўдакладненьня артаграфіі. Вы можаце дапамагчы Вікіпэдыі, адрэдагаваўшы яго (дапамога). |
Фактарны аналіз — шматмерны статыстычны мэтад, які ўжываецца для вывучэньня ўзаемасувязяў паміж значэньнямі зьменных.
Фактарны аналіз упершыню паўстаў у псыхамэтрыцы й у наш час шырока выкарыстоўваецца ня толькі ў псыхалёгіі, але й у нэўрафізыялёгіі, сацыялёгіі, паліталёгіі, у эканоміцы, статыстыцы й іншых навуках. Асноўныя ідэі фактарнага аналізу былі закладзены ангельскім псыхалёгам і антрапалёгам, заснавальнікам эўгенікі Гальтонам Ф. (1822—1911), які зрабіў таксама вялікі ўнёсак у дасьледаваньне індывідуальных адрозьненьняў. Але ў распрацоўку фактарнага аналізу зрабілі ўнёсак шматлікія навукоўцы. Распрацоўкай ды ўкараненьнем фактарнага аналізу ў псыхалёгію займаліся такія навукоўцы як Сьпірмэн Ч. (1904, 1927, 1946), Тэрстаўн Л. (1935, 1947, 1951) і Кетэл Р. (1946, 1947, 1951). Таксама нельга не згадаць ангельскага матэматыка й філёзафа Пірсана К., у значнай ступені які развіў ідэі Ф. Гальтона, амэрыканскага матэматыка Хатэлінга Г., распрацавалага сучасны варыянт мэтаду галоўных кампанэнтаў. Увагі заслугоўвае й ангельскі псыхоляг Айзенк Г., шырока выкарысталы фактарны аналіз для распрацоўкі псыхалягічнае тэорыі асобы. Матэматычна фактарны аналіз распрацоўваўся Хатэлінгам, Харманам, Кайзэрам, Тэрстаўнам, Такерам і інш. Сёньня фактарны аналіз уключаны ва ўсе пакеты статыстычнае апрацоўкі зьвестак — R, SAS, SPSS, Statistica і г. д.
Фактарны аналіз дазваляе вырашыць дзьве важныя праблемы дасьледніка: апісаць аб’ект вымярэньня ўсебакова і ў той жа час кампактна. З дапамогаю фактарнага аналізу магчыма выяўленьне ўтоеных зьменных фактараў, якія адказваюць за наяўнасьць лінейных статыстычных сувязяў карэляцыяў паміж назіранымі зьменнымі.
Такім чынам можна вылучыць 2 мэты Фактарнага аналізу:
Пры аналізе ў адзін фактар аб'ядноўваюцца моцна карэліруючыя паміж сабою зьменныя, як сьледства адбываецца пераразьмеркаваньне дыспэрсіі паміж кампанэнтамі й атрымліваецца максымальна простая й навочная структура фактараў. Пасьля аб'яднаньня карэляванасьць кампанэнт усярэдзіне кожнага фактару паміж сабою будзе вышэй, чым іх карэляванасьць з кампанэнтамі зь іншых фактараў. Гэта працэдура таксама дазваляе вылучыць латэнтныя зьменныя, што бывае асабліва важна пры аналізе сацыяльных уяўленьняў і каштоўнасьцяў. Напрыклад, аналізуючы адзнакі, атрыманыя па некалькіх шкалам, дасьледнік заўважае, што яны падобныя паміж сабою й маюць высокі каэфіцыент карэляцыі, ён можа выказаць здагадку, што існуе некаторая латэнтная зьменная, з дапамогаю якое можна растлумачыць назіранае падабенства атрыманых адзнакаў. Такую латэнтную зьменную завуць фактарам. Дадзены фактар уплывае на шматлікія паказчыкі іншых зьменных, што прыводзіць нас да магчымасьці й неабходнасці вылучыць яго як найболей агульны, больш высокага парадку. Для выяўленьня найболей значных фактараў і, як сьледства, фактарнае структуры, найболей апраўдана ўжываць мэтад галоўных кампанэнтаў (МГК). Сутнасьць дадзенага метаду складаецца ў замене карэляваных кампанэнтаў некарэляванымі фактарамі. Іншаю важнаю характарыстыкаю метаду зьяўляецца магчымасьць абмежавацца найболей інфарматыўнымі галоўнымі кампанэнтамі й выключыць астатнія з аналізу, што спрашчае інтэрпрэтацыю вынікаў. Добрая якасьць МГК таксама ў тым, што ён — адзіны матэматычна абгрунтаваны метад фактарнага аналізу[1][3].
Фактарны аналіз можа быць:
Практычнае выкананьне фактарнага аналізу пачынаецца з праверкі яго ўмоваў. У абавязковыя ўмовы фактарнага аналізу ўваходзяць:
Сутнасьцю фактарнага аналізу зьяўляецца працэдура кручэньня фактараў, гэта значыць пераразьмеркаваньні дыспэрсіі па вызначаным метадзе. Мэта артаганальных кручэньняў — вызначэньне простае структуры фактарных нагрузкаў, мэтаю большасьці касавугольных кручэньняў зьяўляецца вызначэньне простае структуры другасных фактараў, гэта значыць касавугольнае кручэньне варта выкарыстоўваць у прыватных выпадках. Таму артаганальнае кручэньне пераважней. Паводле вызначэньня Мюльека простая структура адпавядае патрабаваньням:
Кручэньне бывае:
Пры першым выглядзе кручэньня кожны наступны фактар вызначаецца так, каб максімізаваць зьменлівасьць, пакінутую ад папярэдніх, таму фактары апыняюцца незалежнымі, некарэляванымі адзін ад аднаго (да гэтага тыпу ставіцца МГК). Другі выгляд — гэта пераўтварэньне, пры якім фактары карэлююць адзін з адным. Перавага касавугольнага кручэньня складаецца ў наступным: калі ў выніку яго выкананьня атрымліваюцца артаганальныя фактары, можна быць упэўненым, што гэта артаганальнасьць сапраўды ім уласьцівая, а не прыўнесена штучна. Існуе каля 13 метадаў кручэньня ў абодвух выглядах, у статыстычнай праграме SPSS 10 даступныя пяць: тры артаганальных, адзін касавугольны й адзін камбінаваны, аднак з усіх найболей ужытны артаганальны метад «варымакс». Метад «варымакс» максімізуе роскід квадратаў нагрузкаў для кожнага фактару, што прыводзіць да павелічэньня вялікіх і памяншэньню малых значэньняў фактарных нагрузкаў. У выніку простая структура атрымліваецца для кожнага фактару ў асобнасьці[1][3][2].
Галоўнаю праблемаю фактарнага аналізу зьяўляецца вылучэньне й інтэрпрэтацыя галоўных фактараў. Пры адборы кампанэнтаў дасьледнік звычайна сутыкаецца зь істотнымі цяжкасьцямі, бо не існуе адназначнага крытэра вылучэньня фактараў, і таму тут непазбежны суб'ектывізм інтэрпрэтацыяў вынікаў. Існуе некалькі часта ўжытных крытэраў вызначэньня ліку фактараў. Некаторыя зь іх зьяўляюцца альтэрнатыўнымі ў адносінах да іншых, а частка гэтых крытэраў можна выкарыстоўваць разам, каб адзін дапаўняў іншы:
Практыка паказвае, што калі кручэньне ня вырабіла істотных зьменаў у структуры фактарнай прасторы, гэта сьведчыць пра яго ўстойлівасьць і стабільнасьць дадзеных. Магчымыя яшчэ два варыянты: 1). моцнае пераразьмеркаваньне дыспэрсіі — вынік выяўленьня латэнтнага фактару; 2). вельмі малаважная зьмена (дзясятыя, сотыя ці тысячныя дзелі нагрузкі) ці яго адсутнасьць наогул, пры гэтым моцныя карэляцыі можа мець толькі адзін фактар, — аднафактарнае разьмеркаваньне. Апошняе магчыма, напрыклад, калі на прадмет наяўнасьці вызначанай уласьцівасьці правяраюцца некалькі сацыяльных групаў, аднак шуканая ўласьцівасць ёсьць толькі ў аднае з іх.
Фактары маюць дзьве характарыстыкі: аб'ём якая тлумачыцца дыспэрсіі й нагрузкі. Калі разглядаць іх з пункту гледжаньня геаметрычнае аналёгіі, то датычна першае адзначым, што фактар, які ляжыць уздоўж восі ОХ, можа максымальна тлумачыць 70 % дыспэрсіі (першы галоўны фактар), фактар, што ляжыць уздоўж восі ОУ, здольны дэтэрмінаваць ня больш за 30 % (другі галоўны фактар). Гэта значыць у ідэальнай сытуацыі ўся дыспэрсія можа быць растлумачана двума галоўнымі фактарамі з паказанымі дзелямі[4]. У звычайнай сытуацыі можа назірацца два ці больш галоўных фактараў, а таксама застаецца частка неінтэрпрытаванай дыспэрсіі (геаметрычныя скажэньні), выключаная з аналізу па чыньніку нязначнасьці. Нагрузкі, ізноў жа з пункту гледжаньня геаметрыі, ёсьць праекцыі ад кропкаў на восі ОХ і ОУ (пры трох- і больш фактарнай структуры таксама на вось ОZ). Праекцыі — гэта каэфіцыенты карэляцыі, кропкі — назіраньні, такім чынам, фактарныя нагрузкі зьяўляюцца мерамі сувязі. Бо моцнае лічыцца карэляцыя з каэфіцыентам Пірсана R ? 0,7, то ў нагрузках трэба надаваць увагу толькі моцным сувязям. Фактарныя нагрузкі могуць валодаць уласьцівасьцю біпалярнасьці — наяўнасьцю дадатных і адмоўных паказчыкаў у адным фактары. Калі біпалярнасць прысутнічае, то паказчыкі, якія ўваходзяць у склад фактару, дыхатамічны й знаходзяцца ў процілеглых каардынатах.
Мэтады фактарнага аналізу: