Сістэмы злічэння ў культуры | |
---|---|
Інда-арабская сістэма злічэння | |
Арабская Індыйская Тамільская Бірманская |
Кхмерская Лаоская Мангольская Тайская |
Усходнеазіяцкія сістэма злічэння | |
Кітайская Японская Сучжоу Карэйская |
В'етнамская Лічыльныя палачкі |
Алфавітныя сістэмы злічэння | |
Абджадыя Армянская Арыябхата Кірылічная |
Грэчаская Эфіопская Яўрэйская Катапаядзі |
Іншыя сістэмы | |
Вавілонская Егіпецкая Этруская Рымская |
Аттычная Кіпу Майская |
Пазіцыйныя сістэмы злічэння | |
Дзесятковая сістэма злічэння (10) | |
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60 | |
Нега-пазіцыйная сістэма злічэння | |
Сіметрычная сістэма злічэння | |
Змешаныя сістэмы злічэння | |
Сістэма злічэння Фібаначчы | |
Непазіцыйныя сістэма злічэння | |
Адзінкавая (унарная) сістэма злічэння | |
Спіс сістэм злічэння |
Шаснаццатко́вая сістэ́ма злічэ́ння[1][2] – пазіцыйная сістэма злічэння, якая мае аснову 16. Гэтая сістэма актыўна ўжываецца ў вылічальнай тэхніцы для кампактнага запісу двайковых лікаў.
У якасці лічбаў шаснаццатковая сістэма ўжывае арабскія лічбы ад 0 да 9, а таксама лацінскія літары ад a да f (або A ... F – рэгістр прынцыповага значэння не мае), якія адпавядаюць дзесятковым лікам ад 10 да 15.
Ужыванне шаснаццатковай сістэмы для запісу двайковых лікаў абумоўлена простасцю пераходу між гэтымі сістэмамі. Для перакладу шаснаццаткавага ліка ў двайковую сістэму дастаткова паслядоўна запісаць двайковае прадстаўленне кожнай з шаснаццатковых лічбаў. Пры гэтым неабходна, каб кожная шаснаццатковая лічба прадстаўлялася чатырма двайковымі (пры неабходнасці злева трэба дапісаць нулі).
Шаснаццатковая лічба | Двайковае прадстаўленне | Дзесятковае прадстаўленне |
---|---|---|
0 | 0000 | 0 |
1 | 0001 | 1 |
2 | 0010 | 2 |
3 | 0011 | 3 |
4 | 0100 | 4 |
5 | 0101 | 5 |
6 | 0110 | 6 |
7 | 0111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
a | 1010 | 10 |
b | 1011 | 11 |
c | 1100 | 12 |
d | 1101 | 13 |
e | 1110 | 14 |
f | 1111 | 15 |
Напрыклад,
Для адваротнага перакладу неабходна разбіць двайковы лік на тэтрады (групы з чатырох разрадаў) і для кожнай з іх запісаць адпаведную шаснаццатковую лічбу. Калі колькасць двайковых разрадаў не дзеліцца на 4, злева дапісваецца патрэбная колькасць нулёў.
Напрыклад,
Такая простасць перакладу тлумачыцца тым, што аснова шаснаццатковай сістэмы (16) складае чацвёртую ступень ад асновы двайковай сістэмы (2). Таму дзяленне двайковага ліка на 16 палягае ў пераносе дзесятковай коскі на чатыры знакі ўлева, у той час як для шаснаццатковага гэта азначае яе перанос улева на адзін знак. Адсюль і вынікае адназначная адпаведнасць двайковай тэтрады да шастаццатковай лічбы.
Пераход між шаснаццатковай і дзесятковай сістэмамі злічэння больш складаны і здзяйсняецца па агульных правілах пераходу між сістэмамі злічэння.