Динамичната система или динамични системи (когато са наблюдавани множество такива) е такъв математически модел на някакъв обект, процес или явление, в който „флуктуациите и всички други статистически явления“ се пренебрегват.[1]
Динамичната система е математическа абстракция, използвана в описанието на физични системи и тяхното изменение във времето. Примери за динамични системи са математическите модели, описващи люлеенето на махало, протичането на течност в тръба, промяната на броя риби от даден вид в езеро и много други.
Състоянието на дадена динамична система е еднозначно определено от набор от реални числа, или по-общо казано, множеството от точки в дадено пространство на състоянията. Малки промени в състоянието трябва да отговарят на малки промени в тези числа. Същите тези числа могат да се разглеждат и като координати в произволно геометрично пространство – многообразие. За всяка точка от това многообразие, или още фазово пространство, съществува единствено правило, описващо по-нататъшната еволюция на системата. Това правило е детерминистично: в дадено време след настоящия момент, съществува само едно възможно състояние, в което системата може да се намира.
Идеята за динамична система може да бъде намерена още в Нютоновата механика. Там, еволюцията на динамични системи е неявно дадена с някакво уравнение (диференчно или диференциално, напр.), което еднозначно определя състоянието на системата след даден къс интервал време. За да се определи състоянието за произволен момент време е необходимо да се извършат множество итерации, при всяка от която се напредва с такъв малък интервал от време. Веднъж тези уравнения интегрирани (аналитично или числено, с множество итерации) може да бъде определено състоянието на системата за произволен момент време. Множеството от тези състояния, които са и координати във фазовото пространство, се нарича траектория, орбита или фазова крива.
Преди масовото въвеждане на бързи изчислителни машини, решаването на динамични системи е било възможно само в някои прости случаи. Числените методи обаче правят възможно пресмятането на орбитите на голям брой динамични системи.
За прости динамични системи, често е напълно достатъчно да се знае орбитата на системата във фазовото пространство. Но по-сложните динамични системи е трудно да бъдат разбрани просто като се знае траекторията им. Трудности възникват поради:
За пионер в изследването на динамичните системи се счита френският математик Жул Анри Поанкаре.
В математиката диферентния морфизмът (diffeomorphism) е изоморфизъм на гладките многообразия. Това е "обратна функция", която преобразува едно диференцируемо многообразие в друго, така че както функцията, така и нейната инверсия да са диференцируеми.
Тази страница частично или изцяло представлява превод на страницата Dynamical system в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите.
ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни. |