Хиперболичната спирала е равнинна трансцендентна крива, известна още като реципрочна спирала. Нейното уравнение в полярни координати е , като приликата му с уравнението на хиперболата в декартови координати обуславя избора на имената на кривата. Хиперболичната спирала е инверсна (обратна) на архимедовата спирала.
С други думи хиперболичната спирала се дефинира като геометричното място на точка, движеща се по равномерно въртящ се около полюса лъч, така че полярният ѝ радиус да е обратно пропорционален на полярния ъгъл.
Принципно има два клона, които съответстват на положителните и отрицателните стойности на , но поради спецификата на графиката ѝ обикновено се изобразява само единият клон на спиралата. Тя започва от безкрайността и с нарастване на аргумента се приближава, извършвайки въртеливо движение, все по-стръмно към полюса, който представлява и асимптотична точка.
Дължината на дъга между две точки от хиперболичната спирала се намира по формулата:
,
а лицето на повърхнината на сектора, съответстващ на дъгата е: