গণিতের দর্শন হলো দর্শনের সেই শাখা যেখানে গণিতের অনুমান, ভিত্তি এবং প্রভাব নিয়ে অধ্যয়ন করা হয়। এর উদ্দেশ্য হলো গণিতের প্রকৃতি ও পদ্ধতি বোঝা এবং মানুষের জীবনে গণিতের স্থান খুঁজে বের করা। গণিতের যৌক্তিক এবং কাঠামোগত প্রকৃতি দার্শনিক সমকক্ষতা প্রয়োগের মাধ্যমে জ্ঞানের এই শাখাটিকে বিশাল ও অনন্য করে তোলে।
গণিতের দর্শনের দুটি প্রধান মূলভাব রয়েছে: গাণিতিক বাস্তববাদ এবং গাণিতিক অতি-বাস্তববাদ।
গণিতের উৎপত্তি যুক্তি এবং মতবিরোধের বিষয়। পদার্থবিদ্যার মতো অন্যান্য বিষয়ের বিকাশের সময় গণিতের জন্ম একটি এলোমেলো ঘটনা ছিল নাকি আসলেই এটি তার নিজস্ব প্রয়োজনীয়তার জন্য সৃষ্টি হয়েছিল, তা এখনও বহু বিতর্কের বিষয়।[১][২]
অনেক চিন্তাবিদ গণিতের প্রকৃতি সম্পর্কে তাদের ধারণা প্রদান করেছেন। আজ কিছু [কে?] গণিতের দার্শনিকরা অনুসন্ধান এবং এর বিষয়গুলির বিবরণ দেওয়ার লক্ষ্যে কাজ করে যাচ্ছেন। পাশ্চাত্য এবং প্রাচ্য উভয় দর্শনেই গাণিতিক দর্শনের ঐতিহ্য রয়েছে। গণিতের পশ্চিমা দর্শনগুলি পিথাগোরাসের মতো অনেক পিছনের সময় হতে শুরু । পিথাগোরাস বর্ণনা করেছিলেন "সবকিছুই গণিত", যা গণিতবাদ হিসেবে পরিচিত। প্লেটো পিথাগোরাসের তত্ত্ব ব্যাখ্যা করেছিলেন এবং গাণিতিক বস্তুর অন্টোলজিক্যাল অবস্থা নামক একটি অবস্থা সম্বন্ধে অধ্যয়ন করেছিলেন। এরিস্টটলও যুক্তিবিদ্যা এবং অসীমতা সম্পর্কিত সমস্যাগুলি নিয়ে গভীর অধ্যয়ন করেছিলেন (যেমন: প্রকৃত বনাম সম্ভাবনা)।
গণিতের উপর গ্রিক দর্শন তাদের জ্যামিতি অধ্যয়নের দ্বারা দৃঢ়ভাবে প্রভাবিত হয়েছিল। উদাহরণস্বরূপ, এক সময়ে, গ্রিকদের মতামত ছিল যে ১ (এক) কোনো সংখ্যা নয়, বরং এটি সংখ্যার একক। এ সূত্র অনুযায়ী, যেকোনো সংখ্যাকে একটি একক হিসাবে সংজ্ঞায়িত করা হয়েছিল। অতএব, ৩ উদাহরণস্বরূপ এককগুলির একটি নির্দিষ্ট সংখ্যক (তিন বার) প্রতিনিধিত্ব করে। তাই ৩ কোনো সংখ্যা হতে পারে না। গ্রিকরা অনুরূপ যুক্তি দিয়েছিল যে ২ একটি সংখ্যা নয় কিন্তু একটি জোড়ার মৌলিক ধারণা। এই মতামতগুলি গ্রিকদের কট্টর জ্যামিতিক সোজা প্রান্ত এবং কম্পাস নামক দৃষ্টিকোণ থেকে উদ্ভূত। উদাহরণস্বরূপ: একটি জ্যামিতিক সমস্যায় আঁকা রেখাগুলি যেমন নির্বিচারে আঁকা রেখার অনুপাতে পরিমাপ করা হয়, তেমনি সংখ্যা সমূহ একটি সংখ্যারেখার অনুপাতে পরিমাপ করা হয় , যার প্রথম সংখ্যা হল এক।
সংখ্যার এই পূর্ববর্তী গ্রিক ধারণাগুলি পরবর্তীকালে দুইয়ের বর্গমূলের আবিষ্কারের দ্বারা উত্থাপিত হয়েছিল। হিপ্পাসাস নামক পিথাগোরাসের একজন শিষ্য দেখিয়েছিলেন যে একক বর্গক্ষেত্রের কর্ণ তার (ইউনিট-দৈর্ঘ্য) প্রান্তের সাথে তুলনীয় নয়। অন্য কথায় তিনি প্রমাণ করেছিলেন যে কোনও বিদ্যমান (মূলদ) সংখ্যা নেই যা বর্গের কর্ণের অনুপাতকে সঠিকভাবে চিত্রিত করে। এটি গণিতের গ্রিক দর্শনের একটি উল্লেখযোগ্য পরিবর্তন ঘটায়। কিংবদন্তি অনুসারে, হিপ্পাসাসের সহকর্মী পিথাগোরিয়ানরা এই আবিষ্কারের দ্বারা এতটাই মর্মাহত হয়েছিল যে তারা হিপ্পাসাসকে পিথাগোরাস-বিরোধী ধারণা ছড়িয়ে দেওয়া থেকে বিরত রাখতে তাকে হত্যা করেছিলেন । সাইমন স্টিভিন ১৬ শতকে গ্রিক ধারণাকে চ্যালেঞ্জ করা প্রথম ইউরোপীয় গণিতবিদ। লিবনিজের সাথে স্টিভিনের শুরু করা গবেষণার ফোকাস গণিত এবং যুক্তিবিদ্যার মধ্যে সম্পর্কের দিকে দৃঢ়ভাবে স্থানান্তরিত হয়েছিল। এই দৃষ্টিকোণটি ফ্রেগ এবং রাসেলের সময় ধরে গণিতের দর্শনে আধিপত্য বিস্তার করেছিল, কিন্তু ১৯ শতকের শেষের দিকে এবং ২০ শতকের শুরুর দিকের গণিতের উন্নয়নের মাধ্যমে প্রশ্নবিদ্ধ হয়েছিল।
গণিতের দর্শনে যুক্তিবিদ্যা এবং গণিতের মধ্যে সম্পর্ক নিয়ে বহু বছর ধরে বিতর্ক করা হয়েছে। ২০ শতকের শুরু পর্যন্ত দার্শনিকরা উল্লিখিত প্রশ্নগুলি জিজ্ঞাসা করতে থাকেন। বিংশ শতাব্দীতে গণিতের দর্শনটি আনুষ্ঠানিক যুক্তিবিদ্যা এবং সেট তত্ত্বের (নিরঙ্কুশ সেট তত্ত্ব এবং স্বতঃসিদ্ধ সেট তত্ত্ব - উভয়ই) মাধ্যমে ব্যাখা করা হয়েছিল।
এটি একটি গভীর ধাঁধা যে একদিকে গাণিতিক সত্যগুলির একটি বাধ্যতামূলক অনিবার্যতা রয়েছে বলে মনে হয়, কিন্তু অন্যদিকে তাদের "সত্যবাদের" উৎস অধরাই থেকে যায়। এই সমস্যাটির সমাধানই গণিতের ভিত্তি হিসাবে পরিচিত।
২০ শতকের শুরুতে, গণিতের দার্শনিকরা এই সমস্ত প্রশ্নগুলি সম্পর্কে বিভিন্ন চিন্তাধারায় বিভক্ত হতে শুরু করেছিলেন। আনুষ্ঠানিকতা, অন্তর্দৃষ্টিবাদ এবং যুক্তিবাদ - এই তিনটি মতবাদ এই সময়ে আবির্ভূত হয়েছিল। আংশিকভাবে ক্রমবর্ধমান ব্যাপক উদ্বেগের প্রতিক্রিয়া হিসাবে গণিত যেভাবে দাঁড়িয়েছিল, তা তার বিশ্লেষণ, নিশ্চিততা এবং কঠোরতার মানদণ্ডের সাথে সঙ্গতিপূর্ণ নয়। প্রতিটি মতবাদ সেই সময়ে সামনে আসা সমস্যাগুলির সমাধান করেছিল। তারা সেগুলি সমাধান করার চেষ্টা করেছিল বা দাবি করেছিল যে গণিত আমাদের সবচেয়ে বিশ্বস্ত জ্ঞান হিসাবে যে মর্যাদা দেয়া হয়েছে, গণিত সে মর্যাদার অধিকারী নয়।
২০ শতকের প্রথম দিকে আনুষ্ঠানিক যুক্তিবিদ্যা এবং সেট তত্ত্বের আশ্চর্যজনক এবং প্রতি-স্বজ্ঞামূলক বিকাশের ফলে ঐতিহ্যগতভাবে যাকে গণিতের ভিত্তি বলা হত, সেই বিষয়ে নতুন প্রশ্ন তৈরি হয়েছিল। শতাব্দীর শুরুতে প্রাচীনপন্থী গণিতবিদদের প্রাথমিক দৃষ্টিভঙ্গি গণিতের মৌলিক স্বতঃসিদ্ধগুলির উন্মুক্ত অন্বেষণের দিকে নিবিষ্ট ছিল। ৩০০ খ্রিস্টপূর্বাব্দের কাছাকাছি সময়ে ইউক্লিডের সময় থেকে গণিতের প্রাকৃতিক ভিত্তি হিসাবে স্বতঃসিদ্ধ পদ্ধতি গ্রহণ করা হয়েছিল। স্বতঃসিদ্ধ, প্রস্তাবনা এবং প্রমাণের ধারণা এবং একটি গাণিতিক বস্তুর সত্য হওয়ার ধারণাকে আনুষ্ঠানিকভাবে গ্রহণ করা হয়েছিল এবং তত্ত্বটিকে গাণিতিকভাবে বিবেচনা করার অনুমতি দেয়া হয়েছিল। গণিতবিদরা জারমেলো- ফ্রেঙ্কেলসেট তত্ত্বের জন্য স্বতঃসিদ্ধ প্রণয়ন করেছিলেন। এটি একটি ধারণাগত কাঠামো প্রদান করেছিল , যার ফলে
শতাব্দীর মাঝামাঝি সময়ে, স্যামুয়েল আইলেনবার্গ এবং সন্ডার্স ম্যাক লেন একটি নতুন গাণিতিক তত্ত্ব তৈরি করেছিলেন, যা ক্যাটেগরি থিওরি নামে পরিচিত, এবং এটি গাণিতিক চিন্তার স্বাভাবিক ভাষার জন্য একটি নতুন প্রতিযোগী হয়ে ওঠে।[৩] বিংশ শতাব্দীর অগ্রগতির সাথে সাথে, দার্শনিক মতামতগুলি এই শতাব্দীর শুরুতে উত্থাপিত ভিত্তি সম্পর্কে প্রশ্নগুলি কতটা সুপ্রতিষ্ঠিত ছিল তা নিয়ে ভিন্নতা দেখা দিয়েছে। হিলারি পুটনাম শতাব্দীর শেষ তৃতীয়াংশের পরিস্থিতির একটি সাধারণ দৃষ্টিভঙ্গি এই বলে তুলে ধরেছেন:
দর্শন যখন বিজ্ঞানের সাথে কিছু ভুল আবিষ্কার করে, তখন কখনও কখনও বিজ্ঞানকে পরিবর্তন করতে হয়- রাসেলের প্যারাডক্স মনে আসে, বার্কলের প্রকৃত অসীমতার উপর আক্রমণের মতো - কিন্তু প্রায়শই এটি দর্শন যা পরিবর্তন করতে হবে। আমি মনে করি না যে দর্শন আজ ধ্রুপদী গণিতের সাথে যে অসুবিধাগুলি খুঁজে পায় তা প্রকৃত অসুবিধা; এবং আমি মনে করি যে গণিতের দার্শনিক ব্যাখ্যাগুলি যা আমাদের প্রতিটি হাতে দেওয়া হচ্ছে তা ভুল, এবং সেই "দার্শনিক ব্যাখ্যা" যা গণিতের প্রয়োজন নেই।[৪]:১৬৯–১৭০
গণিতের দর্শন আজ গণিতের দার্শনিক, যুক্তিবিদ এবং গণিতবিদদের অনুসন্ধানের বিভিন্ন পথ ধরে এগিয়ে চলেছে এবং এই বিষয়ে বর্তমান সময়ে অনেক চিন্তাধারা বিকশিত হয়েছে।
গাণিতিক বাস্তববাদের ধারণা সাধারণভাবে বাস্তববাদের ন্যায়। এটি মনে করে, গাণিতিক সত্তাগুলি মানুষের মনে বিদ্যমান। মানুষ গণিত তৈরি করে না, বরং এটি আবিষ্কার করে এবং মহাবিশ্বের অন্য কোন বুদ্ধিমান প্রাণী সম্ভবত একই কাজ করবে। এই দৃষ্টিকোণ থেকে, সত্যিই এক ধরনের গণিত আবিষ্কার করা যেতে পারে। উদাহরণস্বরূপ, ত্রিভুজগুলি বাস্তব সত্তা, মানুষের মনের সৃষ্টি নয়।
অনেক গণিতবিদ গাণিতিক বাস্তববাদী ছিলেন। তারা নিজেদেরকে প্রাকৃতিকভাবে উদ্ভূত গাণিতিক সমস্যা ও সূত্রাবলীর আবিষ্কারক হিসেবে মনে করে থাকেন। এ রকম গণিতবিদদের অন্তর্ভুক্ত পল এরডস এবং কার্ট গোডেল প্রমুখ। গোডেল বস্তুনিষ্ঠ গাণিতিক বাস্তবতায় বিশ্বাস করতেন, যা ইন্দ্রিয় উপলব্ধির সাথে সাদৃশ্যপূর্ণভাবে অনুভূত হতে পারে। কিছু নীতি সরাসরি সত্য বলে প্রতীয়মান হতে পারে (যেমন: যে কোনো দুটি বস্তুর জন্য, সুনির্দিষ্টভাবে সেই দুটি বস্তুর সমন্বয়ে বস্তুর একটি সংগ্রহ রয়েছে), কিন্তু ধারাবাহিক অনুমানে শুধুমাত্র এই ধরনের নীতির ভিত্তিতে সিদ্ধান্তহীনতাও প্রমাণিত হতে পারে। গোডেল পরামর্শ দিয়েছিলেন যে এই ধরনের অনুমানকে যুক্তিসঙ্গতভাবে অনুমান হিসেবে বিবেচনার জন্য অর্ধ-অভিজ্ঞতামূলক পদ্ধতি ব্যবহার করা যেতে পারে।
গাণিতিক বাস্তববাদের মধ্যে একজন গাণিতিক সত্তাকে কী ধরনের অস্তিত্ব গ্রহণ করে এবং আমরা সেগুলি সম্পর্কে কীভাবে জানি তার উপর নির্ভর করে পার্থক্য রয়েছে। গাণিতিক বাস্তববাদের প্রধান রূপগুলির মধ্যে রয়েছে প্লেটোনিজম এবং অ্যারিস্টোটেলিয়ানিজম।
গাণিতিক বিরোধী-বাস্তববাদ সাধারণত মনে করে যে গাণিতিক বিবৃতিগুলির মূল্য রয়েছে, কিন্তু তারা তা বস্তুগত বা অ-অভিজ্ঞ সত্তা স্বীকার করার মাধ্যমে তারা এ উপায় অনুসরণ করে না। গাণিতিক বিরোধী বাস্তববাদের প্রধান রূপগুলির মধ্যে রয়েছে আনুষ্ঠানিকতা এবং কাল্পনিকতা।
বিখ্যাত গণিতবিদ, জিএইচ হার্ডি দাবি করেছেন যে গণিত হল অনুমানের নান্দনিক সংমিশ্রণ এবং গণিত একটি শিল্প।[৫] হার্ডির জন্য, তার বই, অ্যা ম্যাথমেটিশিয়ান'স অ্যাপোলজিতে গণিতের সংজ্ঞাটি ধারণার নান্দনিক সমন্বয়ের মত।[৬]
গাণিতিক প্লেটোনিজম হল বাস্তববাদের একটি রূপ যা বলে যে গাণিতিক সত্তা বিমূর্ত, তাদের কোন স্থানিক বা কার্যকারণ বৈশিষ্ট্য নেই এবং এটি চিরন্তন এবং অপরিবর্তনীয়। এটি প্রায়শই দাবি করা হয় যে সংখ্যাই হলো অধিকাংশ লোকের দৃষ্টিভঙ্গি। প্লেটোনিজম শব্দটি ব্যবহার করা হয়েছে কারণ এই ধরনের দৃষ্টিভঙ্গি প্লেটোর রূপের তত্ত্ব এবং প্লেটোর গুহার রূপকটিতে বর্ণিত একটি "ধারণার বিশ্ব" (গ্রিক: eidos (εἶδος)) এর সমান্তরালভাবে দেখা যায়। তার মতে দৈনন্দিন বিশ্ব শুধুমাত্র অসম্পূর্ণভাবে আনুমানিক একটি অপরিবর্তনীয়, চূড়ান্ত বাস্তবতা। প্লেটোর গুহা এবং প্লেটোনিজম উভয়েই অর্থপূর্ণ। কেননা প্লেটোর ধারণাগুলি পূর্ববর্তী এবং সম্ভবত ব্যাপক জনপ্রিয় পিথাগোরিয়ানদের দ্বারা প্রভাবিত হয়েছিল।প্রাচীন গ্রিসের পিথাগোরিয়ানরা বিশ্বাস করতেন যে পৃথিবী বেশ আক্ষরিক অর্থেই সংখ্যা দ্বারা উৎপন্ন।
গাণিতিক প্লেটোনিজম-এ বিবেচিত একটি প্রধান প্রশ্ন হল: গাণিতিক সত্তাগুলি সঠিকভাবে কোথায় এবং কীভাবে বিদ্যমান, এবং আমরা কীভাবে তাদের সম্পর্কে জানি? গাণিতিক সত্তা দ্বারা দখল করা আমাদের ভৌত থেকে সম্পূর্ণ আলাদা কোন জগৎ আছে কি? কীভাবে আমরা এই পৃথক জগতে প্রবেশাধিকার পেতে পারি এবং সত্তা সম্পর্কে সত্য আবিষ্কার করতে পারি? একটি প্রস্তাবিত উত্তর হল আল্টিমেট এনসেম্বল, একটি তত্ত্ব যা অনুমান করে যে গাণিতিকভাবে বিদ্যমান সমস্ত কাঠামো তাদের নিজস্ব মহাবিশ্বে শারীরিকভাবেও বিদ্যামান। কার্ট গোডেল'স প্লেটোনিজম[৭] একটি বিশেষ ধরনের গাণিতিক অন্তর্দৃষ্টি পোষণ করে যা আমাদের গাণিতিক বস্তুকে সরাসরি উপলব্ধি করতে দেয়। (গণিতের এই দৃষ্টিভঙ্গিটি সম্পর্কে হুসারল বলেছিলেন,এটি অনেক কিছুর সাথে সাদৃশ্য বহন করে এবং কান্টের ধারণাকে সমর্থন করে যে গণিত অগ্রাধিকারের দাবিদার।) ডেভিস এবং হার্শ তাদের ১৯৯৯ বই দ্য ম্যাথমেটিকাল এক্সপেরিয়েন্স -এ পরামর্শ দিয়েছেন যে বেশিরভাগ গণিতবিদ প্লেটোনিস্টদের মতো কাজ করে। যদিও সাবধানে অবস্থান রক্ষার জন্য চাপ দিলে তারা আনুষ্ঠানিকতার দিকে পিছু হটতে পারে। গণিতবিদ আলেকজান্ডার গ্রোথেনডিকও একজন প্লেটোনিস্ট ছিলেন।
ফুল-ব্লাডেড প্লেটোনিজম হল প্লেটোনিজমের একটি আধুনিক প্রকরণ, যা এই সত্যের প্রতিক্রিয়া স্বরূপ যে গাণিতিক সত্তার বিভিন্ন সেটের অস্তিত্ব প্রমাণিত হতে পারে নিযুক্ত স্বতঃসিদ্ধ এবং অনুমান নিয়মের উপর নির্ভর করে (উদাহরণস্বরূপ, বাদ দেওয়া মধ্যম আইন, এবং পছন্দের স্বতঃসিদ্ধ )। এটি বলে যে সমস্ত গাণিতিক সত্তা বিদ্যমান। এগুলি প্রমাণযোগ্য হতে পারে, এমনকি যদি সেগুলি সবগুলি একক সামঞ্জস্যপূর্ণ স্বতঃসিদ্ধ সেট থেকে উদ্ভূত নাও হয়।[৮]
সেট-তাত্ত্বিক বাস্তববাদ ধারণাটি[৯] পেনেলোপ ম্যাডির দ্বারা দাবিকৃত, এই দৃষ্টিভঙ্গি আমাদের বলে যে সেট তত্ত্বটি হল সেটের একক মহাবিশ্ব।[১০] পল বেনাসেরাফের জ্ঞানতাত্ত্বিক সমস্যার ভিত্তিতে মার্ক বালাগুয়ের এই অবস্থানটি (যা ন্যাচারালাইজড প্লেটোনিজম নামেও পরিচিত কারণ এটি গাণিতিক প্লেটোনিজমের একটি প্রাকৃতিক সংস্করণ) সমালোচনা করেছেন।[১১] অনুরূপ দৃষ্টিভঙ্গি তথা প্লেটোনাইজড ন্যাচারালিজমকে স্ট্যানফোর্ড-এডমন্টন স্কুল সমর্থন দিয়েছিল। এই দৃষ্টিভঙ্গি অনুসারে, প্লেটোনিজমের আরও একটি ঐতিহ্যগত ধরন প্রকৃতিবাদের সাথে সামঞ্জস্যপূর্ণ। প্লেটোনিজমের আরও একটি ঐতিহ্যগত ধরন তারা সমর্থন করে যা সাধারণ নীতিগুলির দ্বারা আলাদা করা হয় এবং বিমূর্ত বস্তুর অস্তিত্বকে প্রকাশ করে।[১২]
ম্যাক্স টেগমার্কের গাণিতিক মহাবিশ্বের হাইপোথিসিস (বা গণিতবাদ ) প্লেটোনিজমের চেয়ে আরও এগিয়ে এই দাবি করে যে সমস্ত গাণিতিক বস্তুর অস্তিত্বই শুধু নেই, অন্য কিছুই নেই। টেগমার্কের একমাত্র অনুমান হল: গাণিতিকভাবে বিদ্যমান সমস্ত কাঠামো শারীরিকভাবেও বিদ্যমান। অর্থাৎ, এই অর্থে যে "সেই (জগতে) যথেষ্ট জটিল স্ব-সচেতন অবকাঠামো ধারণ করার জন্য (তারা) বিষয়গতভাবে নিজেদেরকে শারীরিকভাবে বাস্তব জগতে বিদ্যমান হিসাবে উপলব্ধি করবে"।[১৩][১৪]
যুক্তিবাদ হল এমন একটি মতবাদ, যে মতবাদ অনুসারে গণিত যুক্তিবিদ্যা থেকে হ্রাসযোগ্য এবং তাই এটি যুক্তিবিদ্যার একটি অংশ ছাড়া আর কিছুই নয়।[১৫]:৪১ যুক্তিবিদরা মনে করেন যে গণিতকে অগ্রাধিকারজ্ঞান দ্বারা জানা যায়, কিন্তু পরামর্শ দেন যে গণিতের আমাদের জ্ঞান সাধারণভাবে যুক্তিবিদ্যার আমাদের জ্ঞানের অংশ মাত্র এবং এইভাবে বিশ্লেষণাত্মক, গাণিতিক অন্তর্দৃষ্টির কোনো বিশেষ অনুষদের প্রয়োজন হয় না। এই দৃষ্টিতে, যুক্তি হল গণিতের সঠিক ভিত্তি, এবং সমস্ত গাণিতিক বিবৃতি প্রয়োজনীয় যৌক্তিক সত্য।
রুডলফ কার্নাপ (১৯৩১) দুটি অংশে লজিসিস্ট থিসিস উপস্থাপন করেছেন:[১৫]
গটলব ফ্রেজ যুক্তিবাদের প্রতিষ্ঠাতা ছিলেন। তার সেমিনাল ডাই গ্রুন্ডজেসেটজ ডের অ্যারিথমেটিক (পাটিগণিতের প্রাথমিক আইন) তে তিনি যুক্তির একটি সিস্টেম থেকে একটি সাধারণ ধারণার নীতির সাথে পাটিগণিত তৈরি করেছিলেন, যাকে তিনি "V এর মৌলিক আইন" বলে অভিহিত করেছিলেন (ধারণা F এবং G এর জন্য, F- এর সম্প্রসারণ সমান। G এর এক্সটেনশন যদি এবং শুধুমাত্র যদি সমস্ত বস্তুর জন্য a, Fa সমান Ga ), একটি নীতি যা তিনি যুক্তির অংশ হিসাবে গ্রহণযোগ্য বলে মনে করেন।
ফ্রেজের নির্মাণ ত্রুটিপূর্ণ ছিল। বার্ট্রান্ড রাসেল আবিষ্কার করেছেন যে "V এর মৌলিক আইন" অসঙ্গত (এটি রাসেলের প্যারাডক্স)। এর পরেই ফ্রেজ তার লজিসিস্ট প্রোগ্রাম ত্যাগ করেন, কিন্তু রাসেল এবং হোয়াইটহেড এটি চালিয়ে যান। তারা প্যারাডক্সটিকে "দুষ্ট বৃত্তাকার" হিসাবে দায়ী করে এবং এটিকে মোকাবেলা করার জন্য র্যামিফাইড টাইপ তত্ত্ব নামক তত্ত্ব তৈরি করেছিল। এই প্রক্রিয়ায় তারা অবশেষে আধুনিক গণিতের অনেক কিছু তৈরি করতে সক্ষম হয়েছিল কিন্তু একটি পরিবর্তিত, এবং অত্যধিক জটিল আকারে (উদাহরণস্বরূপ, প্রতিটি প্রকারে বিভিন্ন প্রাকৃতিক সংখ্যা ছিল, এবং অসীমভাবে অনেক প্রকার ছিল)। গণিতের এত বিকাশের জন্য তাদের বেশ কয়েকটি আপসও করতে হয়েছিল, যেমন একটি হ্রাসযোগ্যতার স্বতঃসিদ্ধ। এমনকি রাসেল বলেছেন যে এই স্বতঃসিদ্ধ আসলে যুক্তির অন্তর্গত নয়।
আধুনিক যুক্তিবিদরা (যেমন বব হেল, ক্রিস্পিন রাইট এবং সম্ভবত অন্যরা) ফ্রেজের কাছাকাছি একটি নীতিতে ফিরে এসেছেন। তারা হিউমের নীতির মতো বিমূর্তকরণ নীতির পক্ষে "V এর মৌলিক আইন" ত্যাগ করেছে (ধারণা F- এর অধীনে আসা বস্তুর সংখ্যা G ধারণার অধীনে আসা বস্তুর সংখ্যার সমান যদি এবং শুধুমাত্র যদি F- এর সম্প্রসারণ এবং G- এর সম্প্রসারণ হতে পারে। এক থেকে এক চিঠিপত্রে রাখা) ফ্রেজের জন্য সংখ্যার একটি সুস্পষ্ট সংজ্ঞা দিতে সক্ষম হওয়ার জন্য "V এর মৌলিক আইন" প্রয়োজন, তবে সংখ্যার সমস্ত বৈশিষ্ট্য হিউমের নীতি থেকে নেওয়া যেতে পারে। এটি ফ্রেজের জন্য যথেষ্ট ছিল না কারণ (তাকে ব্যাখ্যা করার জন্য) এটি ৩ নম্বরটি আসলে জুলিয়াস সিজার হওয়ার সম্ভাবনাকে বাদ দেয় না। উপরন্তু, V-এর মৌলিক আইন প্রতিস্থাপনের জন্য তাদের যে দুর্বল নীতিগুলি গ্রহণ করতে হয়েছিল সেগুলিকে আর স্পষ্টতই বিশ্লেষণাত্মক বলে মনে হয় না এবং এইভাবে সম্পূর্ণরূপে যৌক্তিক।
আনুষ্ঠানিকতা ধারণ করে যে গাণিতিক বিবৃতিগুলি নির্দিষ্ট স্ট্রিং ম্যানিপুলেশন নিয়মের পরিণতি সম্পর্কে বিবৃতি হিসাবে বিবেচিত হতে পারে। উদাহরণ স্বরূপ, ইউক্লিডীয় জ্যামিতির "গেম"তে (যাকে "স্বতঃসিদ্ধ" বলে কিছু স্ট্রিং এবং প্রদত্ত স্ট্রিংগুলি থেকে নতুন স্ট্রিং তৈরি করার জন্য কিছু "অনুমানের নিয়ম" নিয়ে গঠিত হিসাবে দেখা যায়) কেউ প্রমাণ করতে পারে যে পিথাগোরিয়ান উপপাদ্য ধারণ করে ( অর্থাৎ, কেউ পিথাগোরিয়ান উপপাদ্যের সাথে সম্পর্কিত স্ট্রিং তৈরি করতে পারে)। আনুষ্ঠানিকতা অনুসারে, গাণিতিক সত্যগুলি সংখ্যা এবং সেট এবং ত্রিভুজ এবং এর মতো নয় - আসলে, তারা কিছুতেই "সম্পর্কে" নয়।
আনুষ্ঠানিকতার আরেকটি সংস্করণ প্রায়ই ডিডাক্টিভিজম নামে পরিচিত। ডিডাক্টিভিজমের ক্ষেত্রে, পিথাগোরিয়ান উপপাদ্যটি একটি পরম সত্য নয়, তবে একটি আপেক্ষিক একটি: যদি কেউ স্ট্রিংগুলির অর্থ এমনভাবে নির্ধারণ করে যাতে খেলার নিয়মগুলি সত্য হয়ে যায় (অর্থাৎ, সত্য বিবৃতিগুলি স্বতঃসিদ্ধ এবং নিয়মগুলির সাথে নির্ধারিত হয় অনুমান সত্য-সংরক্ষণকারী), তাহলে একজনকে অবশ্যই উপপাদ্যটি গ্রহণ করতে হবে, বা, বরং, একজন যে ব্যাখ্যা দিয়েছেন তা অবশ্যই সত্য বিবৃতি হতে হবে। অন্য সব গাণিতিক বিবৃতির ক্ষেত্রেও একই কথা সত্য বলে ধরা হয়। সুতরাং, আনুষ্ঠানিকতার অর্থ এই নয় যে গণিত একটি অর্থহীন প্রতীকী খেলা ছাড়া আর কিছুই নয়। এটা সাধারণত আশা করা হয় যে কিছু ব্যাখ্যা আছে যেখানে খেলার নিয়ম ধারণ করে। (এই অবস্থানটিকে কাঠামোবাদের সাথে তুলনা করুন) কিন্তু এটি কর্মরত গণিতবিদকে তার কাজ চালিয়ে যেতে এবং এই ধরনের সমস্যাগুলি দার্শনিক বা বিজ্ঞানীদের কাছে ছেড়ে দেওয়ার প্রস্তাব দেয়। অনেক আনুষ্ঠানিকতাবাদী বলেন যে বাস্তবে অধ্যয়ন করা স্বতঃসিদ্ধ সিস্টেমগুলি বিজ্ঞান বা গণিতের অন্যান্য ক্ষেত্রগুলির চাহিদা দ্বারা প্রস্তাবিত হবে।
আনুষ্ঠানিকতার প্রথম দিকের একজন প্রধান প্রবক্তা ছিলেন ডেভিড হিলবার্ট, যার প্রোগ্রামটি সমস্ত গণিতের একটি সম্পূর্ণ এবং সামঞ্জস্যপূর্ণ স্বতঃসিদ্ধকরণের উদ্দেশ্যে ছিল।[১৬] হিলবার্টের লক্ষ্য ছিল গাণিতিক পদ্ধতির সামঞ্জস্য প্রদর্শন করা যে অনুমান থেকে যে "অন্তিম পাটিগণিত" ( ধনাত্মক পূর্ণসংখ্যার স্বাভাবিক পাটিগণিতের একটি উপ-সিস্টেম, যা দার্শনিকভাবে বিতর্কিত) সামঞ্জস্যপূর্ণ ছিল। হিলবার্টের গণিতের একটি সিস্টেম তৈরি করার লক্ষ্য যা সম্পূর্ণ এবং সামঞ্জস্যপূর্ণ উভয়ই গোডেলের দ্বিতীয় অসম্পূর্ণতা উপপাদ্য দ্বারা গুরুতরভাবে ক্ষতিগ্রস্ত হয়েছিল, যা বলে যে পর্যাপ্তভাবে অভিব্যক্তিপূর্ণ সামঞ্জস্যপূর্ণ স্বতঃসিদ্ধ সিস্টেম কখনই তাদের নিজস্ব ধারাবাহিকতা প্রমাণ করতে পারে না। যেহেতু এই ধরনের যেকোন স্বতঃসিদ্ধ সিস্টেমে একটি উপ-সিস্টেম হিসাবে অন্তিম পাটিগণিত থাকবে, তাই গোডেল-এর উপপাদ্য বোঝায় যে সিস্টেমের সামঞ্জস্যতা প্রমাণ করা অসম্ভব হবে (যেহেতু এটি তখন তার নিজস্ব ধারাবাহিকতা প্রমাণ করবে, যা গোডেল দেখিয়েছিলেন অসম্ভব)। সুতরাং, গণিতের যেকোন স্বতঃসিদ্ধ ব্যবস্থা বাস্তবে সামঞ্জস্যপূর্ণ তা দেখানোর জন্য, একজনকে প্রথমে গণিতের একটি সিস্টেমের সামঞ্জস্যতা ধরে নিতে হবে যা সামঞ্জস্যপূর্ণ প্রমাণিত হওয়ার জন্য সিস্টেমের চেয়ে শক্তিশালী।
হিলবার্ট প্রাথমিকভাবে একজন ডিডাক্টিভিস্ট ছিলেন, কিন্তু, উপরে থেকে স্পষ্ট হতে পারে, তিনি অভ্যন্তরীণভাবে অর্থপূর্ণ ফলাফল প্রদানের জন্য কিছু মেটাম্যাথেমেটিক পদ্ধতি বিবেচনা করেছিলেন এবং ফিনিটারি পাটিগণিতের ক্ষেত্রে একজন বাস্তববাদী ছিলেন। পরে, তিনি এই মত পোষণ করেন যে ব্যাখ্যা নির্বিশেষে অন্য কোন অর্থপূর্ণ গণিত নেই।
অন্যান্য আনুষ্ঠানিকতাবাদী, যেমন রুডলফ কার্নাপ, আলফ্রেড টারস্কি এবং হাসকেল কারি, গণিতকে আনুষ্ঠানিক স্বতঃসিদ্ধ পদ্ধতির তদন্ত বলে মনে করেন। গাণিতিক যুক্তিবিদরা আনুষ্ঠানিক সিস্টেমগুলি অধ্যয়ন করেন কিন্তু তারা প্রায়শই বাস্তববাদী যেমন তারা আনুষ্ঠানিকতাবাদী।
ফর্মালিস্টরা তুলনামূলকভাবে সহনশীল এবং যুক্তিবিদ্যা, নন-স্ট্যান্ডার্ড নম্বর সিস্টেম, নতুন সেট থিওরি ইত্যাদির নতুন পদ্ধতির প্রতি আমন্ত্রণ জানাচ্ছেন। আমরা যত বেশি গেম অধ্যয়ন করব তত ভাল। যাইহোক, এই তিনটি উদাহরণেই, অনুপ্রেরণা বিদ্যমান গাণিতিক বা দার্শনিক উদ্বেগ থেকে টানা হয়।" গেমস" সাধারণত নির্বিচারে হয় না।
আনুষ্ঠানিকতার প্রধান সমালোচনা হল যে প্রকৃত গাণিতিক ধারণাগুলি যেগুলি গণিতবিদদের দখল করে তা উপরে উল্লিখিত স্ট্রিং ম্যানিপুলেশন গেমগুলি থেকে অনেক দূরে। কোন স্বতঃসিদ্ধ সিস্টেমগুলি অধ্যয়ন করা উচিত সেই প্রশ্নে আনুষ্ঠানিকতা এইভাবে নীরব, কারণ আনুষ্ঠানিক দৃষ্টিকোণ থেকে অন্যটির চেয়ে বেশি অর্থবহ নয়।
সম্প্রতি, কিছু [কে?] আনুষ্ঠানিক গণিতবিদরা প্রস্তাব করেছেন যে আমাদের সমস্ত আনুষ্ঠানিক গাণিতিক জ্ঞান কম্পিউটার-পঠনযোগ্য বিন্যাসে পদ্ধতিগতভাবে এনকোড করা উচিত, যাতে গাণিতিক প্রমাণগুলির স্বয়ংক্রিয় প্রমাণ পরীক্ষা এবং গাণিতিক তত্ত্ব এবং কম্পিউটার সফ্টওয়্যারগুলির বিকাশে প্রমাণিত ইন্টারেক্টিভ উপপাদ্যের ব্যবহার সহজতর হয়। কম্পিউটার বিজ্ঞানের সাথে তাদের ঘনিষ্ঠ সংযোগের কারণে, এই ধারণাটি গাণিতিক অন্তর্দৃষ্টিবিদ এবং "কম্পিউটেবিলিটি" ঐতিহ্যের গঠনবাদীদের দ্বারাও সমর্থন করা হয় - একটি সাধারণ ওভারভিউয়ের জন্য কিউইডি প্রকল্পটি দেখা যায়।
ফরাসী গণিতবিদ হেনরি পয়নকারে প্রথম একজন প্রচলিত দৃষ্টিভঙ্গি প্রকাশ করেছিলেন। ডিফারেনশিয়াল সমীকরণ নিয়ে কাজ করার সময় পয়েনকারের নন-ইউক্লিডীয় জ্যামিতি ব্যবহার তাকে নিশ্চিত করেছিল যে ইউক্লিডীয় জ্যামিতিকে অগ্রাধিকারমূলক সত্য হিসাবে বিবেচনা করা উচিত নয়। তিনি মনে করেন যে জ্যামিতিতে স্বতঃসিদ্ধগুলি তাদের তৈরি ফলাফলের জন্য বেছে নেওয়া উচিত, ভৌত জগৎ সম্পর্কে মানুষের অন্তর্দৃষ্টিগুলির সাথে তাদের স্পষ্ট সংগতির জন্য নয়।
গণিতে, স্বজ্ঞাবাদ হল পদ্ধতিগত সংস্কারের একটি প্রোগ্রাম যার মূলমন্ত্র হল "কোনও অ-অভিজ্ঞ গাণিতিক সত্য নেই" ( এল ই জি ব্রাউয়ার )। এই তত্ত্ব অনুযায়ী, অন্তর্দৃষ্টিবিদরা যাকে গণিতের সংশোধনযোগ্য অংশ বলে মনে করেন তা তাঁরা অন্তর্দৃষ্টি এবং জ্ঞানের কান্তিয়ান ধারণা অনুসারে পুনর্গঠন করতে চান। ব্রাউয়ার, আন্দোলনের প্রতিষ্ঠাতা, মনে করেছিলেন যে গাণিতিক বস্তুগুলি স্বেচ্ছাচারিতার একটি অগ্রিম রূপ থেকে উদ্ভূত হয় যা অভিজ্ঞতামূলক বস্তুর উপলব্ধি জানায়।[১৭]
অন্তর্দৃষ্টিবাদের পিছনে একটি প্রধান শক্তি ছিলেন এল ই জি ব্রাউয়ার, যিনি গণিতের জন্য যেকোনো ধরনের আনুষ্ঠানিক যুক্তির উপযোগিতা প্রত্যাখ্যান করেছিলেন। তার ছাত্র আরেন্ড হেইটিং ক্লাসিক্যাল অ্যারিস্টটলীয় যুক্তি থেকে ভিন্ন একটি অন্তর্দৃষ্টিবাদী যুক্তি পোষণ করেন; এই যুক্তিতে বাদ দেওয়া মধ্যবর্তী আইন নেই এবং তাই দ্বন্দ্ব দ্বারা প্রমাণের উপর ভ্রুকুটি করা হয়। পছন্দের স্বতঃসিদ্ধ বেশিরভাগ স্বজ্ঞাবাদী সেট তত্ত্বেও প্রত্যাখ্যান করা হয়, যদিও কিছু সংস্করণে এটি গৃহীত হয়।
অন্তর্দৃষ্টিবাদে, "স্পষ্ট নির্মাণ" শব্দটি পরিষ্কারভাবে সংজ্ঞায়িত করা হয়নি, এবং এটি সমালোচনার দিকে পরিচালিত করেছে। এই শূন্যস্থান পূরণের জন্য টুরিং মেশিন বা গণনাযোগ্য ফাংশনের ধারণাগুলি ব্যবহার করার চেষ্টা করা হয়েছে, যার ফলে দাবি করা হয়েছে যে শুধুমাত্র সসীম অ্যালগরিদমের আচরণ সম্পর্কিত প্রশ্নগুলি অর্থপূর্ণ এবং গণিতে তদন্ত করা উচিত। এটি গণনাযোগ্য সংখ্যার অধ্যয়নের দিকে পরিচালিত করেছে, যা প্রথম অ্যালান টুরিং দ্বারা প্রবর্তিত হয়েছিল। আশ্চর্যের বিষয় নয়, গণিতের এই পদ্ধতিটি কখনও কখনও তাত্ত্বিক কম্পিউটার বিজ্ঞানের সাথে যুক্ত হয়।
অন্তর্দৃষ্টিবাদের মতো, গঠনবাদে নিয়ন্ত্রক নীতি হল শুধুমাত্র যে গাণিতিক সত্তাগুলিকে একটি নির্দিষ্ট অর্থে স্পষ্টভাবে নির্মাণ করা যেতে পারে সেগুলো গাণিতিক আলোচনার অন্তর্ভুক্ত হওয়া উচিত। এই দৃষ্টিতে, গণিত হল মানুষের অন্তর্দৃষ্টির একটি অনুশীলন, অর্থহীন প্রতীকগুলির সাথে খেলা একটি খেলা নয়। পরিবর্তে, এটি সত্তা সম্পর্কে যা আমরা সরাসরি মানসিক কার্যকলাপের মাধ্যমে তৈরি করতে পারি। উপরন্তু, এই মতবাদগুলির কিছু অনুসারী অ-গঠনমূলক প্রমাণ প্রমাণ প্রত্যাখ্যান করে, যেমন দ্বন্দ্ব দ্বারা প্রমাণ। কিছু গুরুত্বপূর্ণ কাজ ইরেট বিশপ করেছিলেন, যিনি তার ১৯৬৭ ফাউন্ডেশনস অফ কনস্ট্রাকটিভ অ্যানালাইসিসে গঠনমূলক বিশ্লেষণ হিসাবে বাস্তব বিশ্লেষণে সবচেয়ে গুরুত্বপূর্ণ উপপাদ্যগুলির সংস্করণগুলি প্রমাণ করতে সক্ষম হন।[১৮]
সমাপ্তিবাদ হল গঠনবাদের একটি চরম রূপ, যার মতে একটি গাণিতিক বস্তুর অস্তিত্ব নেই যদি না এটি প্রাকৃতিক সংখ্যা থেকে সসীম সংখ্যক ধাপে তৈরি করা যায়। মেরি টাইলস তার ফিলোসফি অফ সেট থিওরি বইতে, যারা গণনাযোগ্য অসীম বস্তুকে শাস্ত্রীয় ফিনিটিস্ট হিসাবে অনুমতি দেয় এবং যারা এমনকি গণনাযোগ্য অসীম বস্তুকে অস্বীকার করে তাদের কঠোর ফিনিটিস্ট হিসাবে চিহ্নিত করে।
ফিনিটিজমের সবচেয়ে বিখ্যাত প্রবক্তা ছিলেন লিওপোল্ড ক্রোনেকার,[১৯] যিনি বলেছিলেন:
ভগবান প্রাকৃতিক সংখ্যা সৃষ্টি করেছেন, বাকি সব মানুষের কাজ।
আল্ট্রাফিনিটিজম হল ফিনিটিজমের একটি আরও চরম সংস্করণ, যা কেবল অসীমই নয়, সসীম পরিমাণকেও প্রত্যাখ্যান করে যা উপলব্ধ সংস্থানগুলির সাথে সম্ভাব্যভাবে নির্মাণ করা যায় না। ফিনিটিজমের আরেকটি রূপ হল ইউক্লিডীয় পাটিগণিত, একটি সিস্টেম যা জন পেন মেবেরি তার বই দ্য ফাউন্ডেশনস অফ ম্যাথমেটিক্স ইন দ্য থিওরি অফ সেট-এ তৈরি করেছিলেন।[২০] মেবেরির সিস্টেমটি সাধারণভাবে অনুপ্রেরণার জন্য অ্যারিস্টোটেলিয়ান এবং গণিতের ভিত্তির কার্যকারিতা বা সম্ভাব্যতার জন্য যে কোনো ভূমিকাকে তার দৃঢ় প্রত্যাখ্যান সত্ত্বেও, কিছুটা অনুরূপ সিদ্ধান্তে আসে, যেমন, যেমন, সুপার-এক্সপোনসিয়েশন একটি বৈধ ফিনিটারি ফাংশন নয়।
স্ট্রাকচারালিজম হল এমন একটি অবস্থা যা গাণিতিক তত্ত্বগুলি কাঠামোকে বর্ণনা করে এবং গাণিতিক বস্তুগুলিকে সম্পূর্ণরূপে সংজ্ঞায়িত করা হয়। এই ধরনের কাঠামোতে সংখ্যা তাদের স্থান দ্বারা পূর্ণ থাকে, ফলস্বরূপ কোন অন্তর্নিহিত বৈশিষ্ট্য নেই। উদাহরণস্বরূপ, এটি বজায় রাখবে যে, সংখ্যা ১ সম্পর্কে যা জানা দরকার তা হল এটি ০ এর পরে প্রথম পূর্ণ সংখ্যা। একইভাবে অন্যান্য সমস্ত পূর্ণ সংখ্যা একটি কাঠামোতে (যা সংখ্যারেখা হিসেবে পরিচিত) তাদের স্থান দ্বারা সংজ্ঞায়িত করা হয়। গাণিতিক বস্তুর অন্যান্য উদাহরণে জ্যামিতির রেখা এবং সমতল, অথবা বিমূর্ত বীজগণিতের উপাদান এবং ক্রিয়াকলাপ অন্তর্ভুক্ত থাকতে পারে। কাঠামোবাদ একটি জ্ঞানতাত্ত্বিকভাবে বাস্তববাদী দৃষ্টিভঙ্গি যা এটি ধরে রাখে যে গাণিতিক বিবৃতিগুলির একটি উদ্দেশ্যমূলক সত্যের মূল্য রয়েছে। যাইহোক, এর কেন্দ্রীয় দাবি শুধুমাত্র একটি গাণিতিক বস্তু কি ধরনের সত্তার সাথে সম্পর্কিত, গাণিতিক বস্তু বা কাঠামোর অস্তিত্বের সাথে নয় (অন্য কথায়, তাদের অন্টোলজির সাথে নয় )। গাণিতিক বস্তুর অস্তিত্বের ধরন স্পষ্টতই নির্ভর করবে যে কাঠামোর মধ্যে তারা এম্বেড করা হয়েছে তার উপর; স্ট্রাকচারালিজমের বিভিন্ন উপ-প্রজাতি এই বিষয়ে বিভিন্ন অন্টোলজিক্যাল দাবি করে।[২১]
অ্যান্টি রেম স্ট্রাকচারালিজম ("বিষয়টির আগে") প্লেটোনিজমের অনুরূপ অন্টোলজি রয়েছে। কাঠামোর একটি বাস্তব কিন্তু বিমূর্ত এবং অমূলক অস্তিত্ব আছে বলে ধরে নেওয়া হয়। যেমন, এটি এই ধরনের বিমূর্ত কাঠামো এবং মাংস-রক্তের গণিতবিদদের মধ্যে মিথস্ক্রিয়া ব্যাখ্যা করার জন্য আদর্শ জ্ঞানতাত্ত্বিক সমস্যার সম্মুখীন হয় ( বেনাসেরাফের শনাক্তকরণ সমস্যা দেখুন )।
ইন রি স্ট্রাকচারালিজম হল অ্যারিস্টটলিয়ন রিয়ালিজমের সমতুল্য। কিছু কংক্রিট সিস্টেমে তাদের উদাহরণ হিসাবে যেমন কাঠামো বিদ্যমান রাখা হয়. এটি এমন স্বাভাবিক সমস্যাগুলি নিয়ে আসে যে কিছু পুরোপুরি বৈধ কাঠামোতে দুর্ঘটনাক্রমে ঘটে যেতে পারে না, এবং একটি সীমিত ভৌত জগৎ কিছু অন্যথায় বৈধ কাঠামো মিটমাট করার জন্য যথেষ্ট "বড়" নাও হতে পারে।
পোস্ট রেম স্ট্রাকচারালিজম এমনভাবে স্ট্রাকচার সম্পর্কে বাস্তববাদী বিরোধী যা নামবাদের সমান্তরাল। নামবাদের মতো, পোস্ট রেম পদ্ধতিটি সম্পর্কগত কাঠামোতে তাদের স্থান ব্যতীত অন্যান্য বৈশিষ্ট্য সহ বিমূর্ত গাণিতিক বস্তুর অস্তিত্বকে অস্বীকার করে। এই দৃষ্টিভঙ্গি অনুসারে গাণিতিক সিস্টেমগুলি বিদ্যমান, এবং তাদের কাঠামোগত বৈশিষ্ট্যগুলি মিল রয়েছে। যদি একটি কাঠামোর ক্ষেত্রে কিছু সত্য হয়, তবে এটি কাঠামোর উদাহরণ প্রদানকারী সমস্ত সিস্টেমের ক্ষেত্রে সত্য হবে। যাইহোক, সিস্টেমগুলির মধ্যে "সাধারণভাবে অধিষ্ঠিত" কাঠামোর কথা বলা নিছকই সহায়ক: আসলে তাদের কোন স্বাধীন অস্তিত্ব নেই।
মূর্ত মন তত্ত্বগুলি বলে যে গাণিতিক চিন্তা মানুষের জ্ঞানীয় যন্ত্রের একটি প্রাকৃতিক বৃদ্ধি যা আমাদের ভৌত মহাবিশ্বে নিজেকে খুঁজে পায়। উদাহরণস্বরূপ, সংখ্যার বিমূর্ত ধারণাটি বিযুক্ত বস্তু গণনার অভিজ্ঞতা থেকে আসে। এটা ধরে নেওয়া হয় যে গণিত সার্বজনীন নয় এবং মানুষের মস্তিষ্ক ছাড়া অন্য কোনো বাস্তব অর্থে এর অস্তিত্ব নেই। মানুষ নির্মাণ করে, কিন্তু গণিত আবিষ্কার করে না।
এই দৃষ্টিভঙ্গির সাথে, ভৌত মহাবিশ্বকে গণিতের চূড়ান্ত ভিত্তি হিসাবে দেখা যেতে পারে: এটি মস্তিষ্কের বিবর্তনকে নির্দেশিত করেছিল এবং পরে নির্ধারণ করেছিল যে এই মস্তিষ্ক কোন প্রশ্নগুলি তদন্তের যোগ্য খুঁজে পাবে। যাইহোক, মানুষের মনের বাস্তবতার উপর কোন বিশেষ দাবি নেই বা গণিত থেকে তৈরি করা পদ্ধতির নেই। অয়লারের পরিচয়ের মতো এই ধরনের নির্মাণগুলি যদি সত্য হয় তবে সেগুলি মানুষের মন এবং জ্ঞানের মানচিত্র হিসাবে সত্য।
মূর্ত মন তাত্ত্বিকগণ এইভাবে গণিতের কার্যকারিতা ব্যাখ্যা করেন- এই মহাবিশ্বে কার্যকর হওয়ার জন্য মস্তিষ্ক দ্বারা গণিত তৈরি করা হয়েছিল।
জর্জ ল্যাকফ এবং রাফায়েল ই. নুনেজ দ্বারা এই দৃষ্টিকোণটির সর্বাধিক অ্যাক্সেসযোগ্য, বিখ্যাত এবং কুখ্যাত চিকিত্সা হল গণিত কোথা থেকে আসে। এছাড়াও, গণিতবিদ কিথ ডেভলিন তার বই দ্যা ম্যাথ ইনস্টিঙ্কট- এর মাধ্যমে অনুরূপ ধারণাগুলি অনুসন্ধান করেছেন, যেমনটি স্নায়ুবিজ্ঞানী স্ট্যানিস্লাস দেহেন তার বই "দ্যা নম্বর সেন্স"-এর মাধ্যমে করেছেন। এই দৃষ্টিকোণকে অনুপ্রাণিত করে এমন দার্শনিক ধারণাগুলির বিষয়ে আরও জানতে, গণিতের জ্ঞানীয় বিজ্ঞান দেখুন।
অ্যারিস্টটলীয় বাস্তববাদ বলে যে গণিত বৈশিষ্ট্যগুলি যেমন প্রতিসাম্য, ধারাবাহিকতা এবং ক্রম অধ্যয়ন করে যা আক্ষরিক অর্থে ভৌত জগতে উপলব্ধি করা যায় (বা অন্য যে কোনও বিশ্বে থাকতে পারে)। এটি প্লেটোনিজমের সাথে বৈপরীত্য করে যে গণিতের বস্তুগুলি, যেমন সংখ্যা, একটি "বিমূর্ত" বিশ্বে বিদ্যমান নয় তবে শারীরিকভাবে উপলব্ধি করা যেতে পারে। উদাহরণস্বরূপ, ৪ নম্বরটি তোতাপাখির একটি স্তূপ এবং সার্বজনীন "একটি তোতাপাখি হওয়া" এর মধ্যে সম্পর্কের মধ্যে উপলব্ধি করা হয়েছে যা গাদাটিকে অনেকগুলি তোতাতে বিভক্ত করে।[২২] অ্যারিস্টটলীয় বাস্তববাদ(যা পেনেলোপ ম্যাডির দৃষ্টিভঙ্গির কাছাকাছি) এর পক্ষে গণিতের দর্শন অনুযায়ী জেমস ফ্র্যাঙ্কলিন এবং সিডনি স্কুল অবস্থান নিয়েছেন। যখন একটি ডিমের কার্টন খোলা হয়, তখন তিনটি ডিমের একটি সেট অনুভূত হয় (অর্থাৎ, একটি গাণিতিক সত্তা ভৌত জগতে অনুভূত হয়)।[২৩] অ্যারিস্টটলীয় বাস্তববাদের জন্য একটি সমস্যা হল উচ্চতর অসীমতা সম্পর্কে কী হিসাব দেওয়া হবে, যা ভৌত জগতে উপলব্ধি করা যায় না।
জন পেন মেবেরি তার দ্য ফাউন্ডেশনস অফ ম্যাথমেটিক্স ইন দ্য থিওরি অফ সেট[২০] বইয়ে ইউক্লিডীয় পাটিগণিতের বিকাশ করেছেন। মেবেরি, ইউক্লিডকে অনুসরণ করে, সংখ্যাগুলিকে প্রকৃতিতে উপলব্ধি করা কেবলমাত্র "নির্দিষ্ট সংখ্যক একক" হিসাবে বিবেচনা করেন - যেমন "লন্ডন সিম্ফনি অর্কেস্ট্রার সদস্য" বা "বিরনাম কাঠের গাছ"। ইউক্লিডের সাধারণ ধারণা ৫ (পুরো অংশের চেয়ে বড়) ব্যর্থ হয় তা মেবেরির জন্য মূলত প্রকৃতি সম্পর্কে একটি প্রশ্ন এবং এতে কোনো ট্রান্সেন্ডেন্টাল অনুমান করা হয় না এবং এর ফলে এটি অসীম হিসাবে গণ্য করা হবে।
গণিতের দর্শনে মনোবিজ্ঞান হল এমন একটি অবস্থান যেখানে গাণিতিক ধারণা এবং/অথবা সত্যগুলি মনস্তাত্ত্বিক তথ্য (বা আইন) থেকে উদ্ভূত বা ব্যাখ্যা করা হয়।
জন স্টুয়ার্ট মিল একধরনের যৌক্তিক মনোবিজ্ঞানের প্রবক্তা ছিলেন বলে মনে করা হয়, যেমন ১৯ শতকের অনেক জার্মান যুক্তিবিদ যেমন সিগওয়ার্ট এবং এরডম্যান এবং সেইসাথে অতীত এবং বর্তমানের অনেক মনোবিজ্ঞানী : উদাহরণস্বরূপ, গুস্তাভ লে বন। সাইকোলজিজম বিখ্যাতভাবে ফ্রেজের দ্বারা তার দ্য ফাউন্ডেশনস অফ অ্যারিথমেটিক এবং তার অনেক কাজ এবং প্রবন্ধে সমালোচিত হয়েছিল, যার মধ্যে তার পাটিগণিতের হুসারল এর দর্শন- এর পর্যালোচনাও রয়েছে। এডমন্ড হুসারল, তার লজিক্যাল ইনভেস্টিগেশনের প্রথম খণ্ডে, "বিশুদ্ধ যুক্তিবিদ্যার প্রলেগোমেনা" নামে পরিচিত, মনোবিজ্ঞানের পুঙ্খানুপুঙ্খভাবে সমালোচনা করে এবং এটি থেকে বিষয়টিকে দূরে রাখার চেষ্টা করেছেন।" প্রোলেগোমেনা" ফ্রেজের করা সমালোচনার চেয়ে মনোবিজ্ঞানের আরও সংক্ষিপ্ত, ন্যায্য এবং পুঙ্খানুপুঙ্খ খণ্ডন হিসাবে বিবেচিত হয় এবং এটিকে আজকে অনেকেই মনোবিজ্ঞানের উপর সিদ্ধান্তমূলক আঘাতের জন্য একটি স্মরণীয় খণ্ডন হিসাবে বিবেচনা করে। চার্লস স্যান্ডার্স পিয়ার্স এবং মরিস মেরলিউ-পন্টিও মনোবিজ্ঞানের সমালোচনা করেছিলেন।
গাণিতিক অভিজ্ঞতাবাদ বাস্তববাদের একটি রূপ যা অস্বীকার করে যে গণিতকে সর্বোপরি অগ্রাধিকার হিসাবে জানা যায়। এটি বলে যে আমরা অন্যান্য বিজ্ঞানের তথ্যের মতোই অভিজ্ঞতামূলক গবেষণার মাধ্যমে গাণিতিক তথ্য আবিষ্কার করি। এটি ২০ শতকের গোড়ার দিকে সমর্থন করা ক্লাসিক্যাল তিনটি অবস্থানের মধ্যে একটি নয়, তবে প্রাথমিকভাবে শতাব্দীর মাঝামাঝি সময়ে উদ্ভূত হয়েছিল। যাইহোক, এই মত একটি মত একটি গুরুত্বপূর্ণ প্রাথমিক প্রবক্তা ছিলেন জন স্টুয়ার্ট মিল। মিলের দৃষ্টিভঙ্গি ব্যাপকভাবে সমালোচিত হয়েছিল, কারণ, সমালোচকদের মতে, যেমন এজে আয়ারের ভাষায়,[২৪] এটি "২ + ২ = ৪" এর মতো বিবৃতিগুলিকে অনিশ্চিত, আনুষঙ্গিক সত্য হিসাবে প্রকাশ করে, যা আমরা কেবল দুটি জোড়ার উদাহরণ পর্যবেক্ষণ করে শিখতে পারি।
সমসাময়িক গাণিতিক অভিজ্ঞতাবাদ, কুইন এবং হিলারি পুটনাম দ্বারা প্রণীত এবং প্রাথমিকভাবে অপরিহার্য যুক্তি দ্বারা সমর্থিত। গণিত সমস্ত অভিজ্ঞতামূলক বিজ্ঞানের জন্য অপরিহার্য, এবং যদি আমরা বিজ্ঞান দ্বারা বর্ণিত ঘটনাগুলির বাস্তবতায় বিশ্বাস করতে চাই তবে আমাদেরও বিশ্বাস করা উচিত। এই বর্ণনার জন্য প্রয়োজনীয় সেই সত্তার বাস্তবতা। অর্থাৎ, যেহেতু পদার্থবিজ্ঞানে ইলেকট্রন সম্পর্কে কথা বলতে হবে কেন আলোর বাল্বগুলি তাদের মতো আচরণ করে, তাহলে ইলেকট্রন অবশ্যই বিদ্যমান থাকবে।. যেহেতু পদার্থবিদ্যার যেকোন ব্যাখ্যা দিতে সংখ্যার কথা বলতে হবে, তাই সংখ্যা অবশ্যই থাকতে হবে। কুইন এবং পুটনামের সামগ্রিক দর্শনের সাথে মিল রেখে, এটি একটি প্রাকৃতিক যুক্তি। এটি অভিজ্ঞতার সর্বোত্তম ব্যাখ্যা হিসাবে গাণিতিক সত্তার অস্তিত্বের পক্ষে যুক্তি দেয়, এইভাবে গণিতকে অন্যান্য বিজ্ঞান থেকে আলাদা করে দেয়।
" প্ল্যাটোনিস্ট " শব্দটি একটি অতি-নির্দিষ্ট অন্টোলজি বোঝায় যা গাণিতিক অনুশীলনের জন্য কোনো বাস্তব অর্থেই প্রয়োজনীয় নয় বলে পুটনাম দৃঢ়ভাবে প্রত্যাখ্যান করেছিলেন। তিনি "বিশুদ্ধ বাস্তববাদ" এর একটি রূপের পক্ষে ছিলেন যা সত্যের অতীন্দ্রিয় ধারণাকে প্রত্যাখ্যান করেছিল এবং গণিতে অনেক আধা-অভিজ্ঞতা গ্রহণ করেছিল। এটি ২০ শতকের শেষের দিকে ক্রমবর্ধমান জনপ্রিয় দাবি থেকে বেড়েছে যে গণিতের কোন ভিত্তি নেই। অস্তিত্ব প্রমাণিত হতে পারে. এটিকে কখনও কখনও "গণিতের উত্তর-আধুনিকতাবাদ"ও বলা হয় যদিও এই শব্দটিকে কেউ কেউ অতিভারী এবং অন্যদের দ্বারা অপমানজনক বলে মনে করেন। আধা-অভিজ্ঞতাবাদ যুক্তি দেয় যে তাদের গবেষণা করার সময়, গণিতবিদরা অনুমানের পাশাপাশি উপপাদ্যগুলি প্রমাণ করেন। একটি গাণিতিক যুক্তি যেমন মিথ্যাকে উপসংহার থেকে প্রাঙ্গনে প্রেরণ করতে পারে ঠিক তেমনি এটি সত্যকে প্রাঙ্গণ থেকে উপসংহারে প্রেরণ করতে পারে। পুটনাম যুক্তি দিয়েছেন যে গাণিতিক বাস্তববাদের যেকোন তত্ত্বের মধ্যে আধা-অভিজ্ঞতামূলক পদ্ধতি অন্তর্ভুক্ত থাকবে। তিনি প্রস্তাব করেছিলেন যে গণিত করা একটি এলিয়েন প্রজাতি প্রাথমিকভাবে আধা-অনুভূতিমূলক পদ্ধতির উপর ভালভাবে নির্ভর করতে পারে, প্রায়শই কঠোর এবং স্বতঃসিদ্ধ প্রমাণগুলি পরিত্যাগ করতে ইচ্ছুক এবং এখনও গণিত করে- সম্ভবত তাদের গণনার ব্যর্থতার কিছুটা বেশি ঝুঁকিতে। তিনি এ বিষয়ে বিস্তারিত যুক্তি তুলে ধরেন এবং নতুন দিকনির্দেশনা দেন।[২৫] আধা-অভিজ্ঞতাবাদও ইমরে লাকাতোস দ্বারা বিকশিত হয়েছিল।
গণিতের অভিজ্ঞতামূলক মতামতের সবচেয়ে গুরুত্বপূর্ণ সমালোচনা মিলের বিরুদ্ধে উত্থাপিত হয়। গণিত যদি অন্যান্য বিজ্ঞানের মতোই অভিজ্ঞতামূলক হয়, তাহলে এটি ইঙ্গিত দেয় যে এর ফলাফলগুলি তাদের মতোই ভুল, এবং ঠিক ততটাই আনুষঙ্গিক। মিলের ক্ষেত্রে অভিজ্ঞতামূলক ন্যায্যতা সরাসরি আসে, যখন কুইনের ক্ষেত্রে এটি আসে পরোক্ষভাবে, সামগ্রিকভাবে আমাদের বৈজ্ঞানিক তত্ত্বের সমন্বয়ের মাধ্যমে, অর্থাৎ ই ও উইলসনের পরে সঙ্গতি। কুইন পরামর্শ দেন যে গণিত সম্পূর্ণরূপে নিশ্চিত বলে মনে হয় কারণ এটি আমাদের বিশ্বাসের জালে যে ভূমিকা পালন করে তা অসাধারণভাবে কেন্দ্রীয়, এবং এটিকে সংশোধন করা আমাদের পক্ষে অত্যন্ত কঠিন হবে, যদিও অসম্ভব নয়।
গণিতের একটি দর্শনের জন্য প্রতিটি দিক বিবেচনা করে কুইন এবং গোডেলের পদ্ধতির কিছু ত্রুটিগুলি কাটিয়ে ওঠার চেষ্টা করে। বাস্তববাদী তত্ত্বের আরেকটি উদাহরণ হল মূর্ত মন তত্ত্ব।
পরীক্ষামূলক প্রমাণের উদাহরণ দেয়া হয় যে যেকোনো মানব শিশু প্রাথমিক পাটিগণিত করতে পারে।
১৯৮০ সালে হার্ট্রি ফিল্ড সায়েন্স উইদাউট নাম্বার প্রকাশ করার সময় গাণিতিক কাল্পনিকতা খ্যাতি অর্জন করে[২৬], যা কুইনের অপরিহার্যতা যুক্তিকে প্রত্যাখ্যান করে এবং প্রকৃতপক্ষে বিপরীত করে। যেখানে কুইন পরামর্শ দিয়েছিলেন যে গণিত আমাদের সর্বোত্তম বৈজ্ঞানিক তত্ত্বের জন্য অপরিহার্য, এবং তাই স্বাধীনভাবে বিদ্যমান সত্ত্বা সম্পর্কে কথা বলা সত্যের একটি অংশ হিসাবে গ্রহণ করা উচিত, ফিল্ড পরামর্শ দিয়েছিলেন যে গণিত অযোগ্য ছিল, এবং তাই কিছু সম্পর্কে কথা না বলে মিথ্যার একটি সংস্থা হিসাবে বিবেচনা করা উচিত। বাস্তব সংখ্যা বা ফাংশনের কোনো রেফারেন্স ছাড়াই তিনি নিউটনিয়ান মেকানিক্সের সম্পূর্ণ স্বতঃসিদ্ধকরণের মাধ্যমে এটি করেছিলেন। তিনি হিলবার্টের স্বতঃসিদ্ধের "মাঝামাঝি" দিয়ে শুরু করেছিলেনস্থানটিকে সমন্বয় না করে বৈশিষ্ট্যযুক্ত করতে, এবং তারপর ভেক্টর ক্ষেত্র দ্বারা পূর্বে করা কাজটি করার জন্য বিন্দুর মধ্যে অতিরিক্ত সম্পর্ক যোগ করুন। হিলবার্টের জ্যামিতি গাণিতিক, কারণ এটি বিমূর্ত বিন্দু সম্পর্কে কথা বলে, কিন্তু ফিল্ডের তত্ত্বে, এই বিন্দুগুলি হল ভৌত স্থানের কংক্রিট বিন্দু, তাই কোন বিশেষ গাণিতিক বস্তুর প্রয়োজন নেই।
সংখ্যা ব্যবহার না করে কীভাবে বিজ্ঞান করতে হয় তা দেখানোর পরে, ফিল্ড গণিতকে এক ধরনের দরকারি কথাসাহিত্য হিসাবে পুনর্বাসন করতে এগিয়ে যান। তিনি দেখিয়েছিলেন যে গাণিতিক পদার্থবিদ্যা হল তার অ-গাণিতিক পদার্থবিদ্যার একটি রক্ষণশীল সম্প্রসারণ (অর্থাৎ, গাণিতিক পদার্থবিদ্যায় প্রমাণিত প্রতিটি ভৌত তথ্য ফিল্ডের সিস্টেম থেকে ইতোমধ্যেই প্রমাণযোগ্য), যাতে গণিত একটি নির্ভরযোগ্য প্রক্রিয়া যার ভৌত প্রয়োগগুলি সত্য, যদিও তার নিজস্ব বিবৃতি মিথ্যা. এইভাবে, গণিত করার সময়, আমরা নিজেদেরকে এক ধরনের গল্প বলা, সংখ্যার অস্তিত্বের মতো কথা বলতে পারি। ফিল্ডের জন্য, "২ + ২ = ৪" এর মতো একটি বিবৃতি ঠিক ততটাই কাল্পনিক যেমন " শার্লক হোমস ২২১বি বেকার স্ট্রিটে থাকতেন" - তবে প্রাসঙ্গিক কল্পকাহিনী অনুসারে উভয়ই সত্য।
এই হিসাবে, গণিতের জন্য বিশেষ কোন আধিভৌতিক বা জ্ঞানতাত্ত্বিক সমস্যা নেই। শুধুমাত্র অ-গাণিতিক পদার্থবিদ্যা এবং সাধারণভাবে কল্পবিজ্ঞান সম্পর্কে সাধারণ উদ্বেগ বাকি আছে। কিছু ক্ষেত্রের পদ্ধতি খুব প্রভাবশালী হয়েছে কিন্তু তা ব্যাপকভাবে প্রত্যাখ্যান করা হয়েছে। এটি আংশিক কারণ তার হ্রাস করার জন্য দ্বিতীয়-ক্রমের যুক্তির শক্তিশালী অংশ প্রয়োজন এবং কারণ রক্ষণশীলতার বিবৃতিটি বিমূর্ত মডেল বা কর্তনের উপর পরিমাপ করা প্রয়োজন বলে মনে হয়।
সামাজিক গঠনবাদ গণিতকে প্রাথমিকভাবে সামাজিক গঠন হিসেবে দেখে, সংস্কৃতির একটি পণ্য হিসাবে, সংশোধন এবং পরিবর্তন সাপেক্ষে. অন্যান্য বিজ্ঞানের মতো, গণিতকে একটি অভিজ্ঞতামূলক প্রচেষ্টা হিসাবে দেখা হয় যার ফলাফলগুলি ক্রমাগত মূল্যায়ন করা হয় এবং বাতিল করা যেতে পারে। যাইহোক, একটি অভিজ্ঞতাবাদী দৃষ্টিভঙ্গিতে মূল্যায়নকে "বাস্তবতার" সাথে তুলনা করা হয়, সামাজিক গঠনবাদীরা জোর দেন যে গাণিতিক গবেষণার দিকনির্দেশনাটি সামাজিক গোষ্ঠীর ফ্যাশন দ্বারা বা এটিকে অর্থায়নকারী সমাজের চাহিদা দ্বারা নির্ধারিত হয়। যাইহোক, যদিও এই ধরনের বাহ্যিক শক্তিগুলি কিছু গাণিতিক গবেষণার দিক পরিবর্তন করতে পারে, তবে শক্তিশালী অভ্যন্তরীণ সীমাবদ্ধতা রয়েছে - গাণিতিক ঐতিহ্য, পদ্ধতি, সমস্যা, অর্থ এবং মূল্যবোধ যার মধ্যে গণিতবিদরা গড়ে উঠেছেন - যা ঐতিহাসিকভাবে সংজ্ঞায়িত শৃঙ্খলা রক্ষা করার জন্য কাজ করে।
এটি কর্মরত গণিতবিদদের ঐতিহ্যগত বিশ্বাসের বিপরীতে চলে, যে গণিত একরকম বিশুদ্ধ বা উদ্দেশ্যমূলক। কিন্তু সামাজিক গঠনবাদীরা যুক্তি দেন যে গণিত আসলে অনেক অনিশ্চয়তার উপর ভিত্তি করে: গাণিতিক অনুশীলনের বিকাশের সাথে সাথে, আগের গণিতের অবস্থা সন্দেহের মধ্যে ফেলে দেওয়া হয়, এবং বর্তমান গাণিতিক সম্প্রদায়ের দ্বারা এটি প্রয়োজনীয় বা কাঙ্ক্ষিত মাত্রায় সংশোধন করা হয়। এটি লাইবনিজ এবং নিউটনের ক্যালকুলাসের পুনঃপরীক্ষা থেকে বিশ্লেষণের বিকাশে দেখা যায়। তারা আরও যুক্তি দেয় যে সমাপ্ত গণিতকে প্রায়শই খুব বেশি মর্যাদা দেওয়া হয়, এবং লোক গণিত যথেষ্ট নয়, অনুশীলন হিসাবে স্বতঃসিদ্ধ প্রমাণ এবং সমকক্ষ পর্যালোচনার উপর অতিরিক্ত জোর দেওয়ার কারণে।
গণিতের সামাজিক প্রকৃতি তার উপ-সংস্কৃতিতে তুলে ধরা হয়েছে। গণিতের একটি শাখায় প্রধান আবিষ্কারগুলি করা যেতে পারে এবং অন্যটির সাথে প্রাসঙ্গিক হতে পারে, তবুও গণিতবিদদের মধ্যে সামাজিক যোগাযোগের অভাবের জন্য সম্পর্কটি অনাবিষ্কৃত হয়। সামাজিক গঠনবাদীরা যুক্তি দেন যে প্রতিটি বিশেষত্ব তার নিজস্ব জ্ঞানীয় সম্প্রদায় গঠন করে এবং প্রায়শই গণিতের বিভিন্ন ক্ষেত্রগুলির সাথে সম্পর্কিত হতে পারে এমন অনুমানকে একত্রিত করার তদন্তে যোগাযোগ করতে বা অনুপ্রাণিত করতে অনেক অসুবিধা হয়। সামাজিক গঠনবাদীরা "গণিত করার" প্রক্রিয়াটিকে বাস্তবে অর্থ তৈরি করার প্রক্রিয়া হিসাবে দেখেন, যখন সামাজিক বাস্তববাদীরা বিমূর্ত করার জন্য মানুষের ক্ষমতার, বা মানুষের জ্ঞানীয় পক্ষপাতের বা গণিতবিদদের যৌথ বুদ্ধিমত্তার ঘাটতি দেখেন। সামাজিক গঠনবাদীরা কখনও কখনও গণিতের ভিত্তির অনুসন্ধানকে ব্যর্থ হতে বাধ্য, অর্থহীন বা এমনকি অর্থহীন বলে প্রত্যাখ্যান করেন।
এই স্কুলে অবদানগুলি ইমরে লাকাটোস এবং থমাস টিমোকজকো দ্বারা তৈরি করা হয়েছে, যদিও এটি স্পষ্ট নয় যে উভয়ই শিরোনামটিকে সমর্থন করবে। [তথ্যসূত্র প্রয়োজন] অতি সম্প্রতি পল আর্নেস্ট স্পষ্টভাবে গণিতের একটি সামাজিক গঠনবাদী দর্শন প্রণয়ন করেছেন।[২৭] কেউ কেউ পল এরডস -এর কাজকে সামগ্রিকভাবে এই দৃষ্টিভঙ্গিকে অগ্রসর হওয়ার জন্য বিবেচনা করেন (যদিও তিনি ব্যক্তিগতভাবে এটি প্রত্যাখ্যান করেছিলেন) তার অনন্যভাবে বিস্তৃত সহযোগিতার কারণে, যা অন্যদেরকে "সামাজিক কার্যকলাপ হিসাবে গণিত" দেখতে এবং অধ্যয়ন করতে প্ররোচিত করেছিল, যেমন, এর মাধ্যমে এরডস নম্বর। রুবেন হার্শ গণিতের সামাজিক দৃষ্টিভঙ্গিও উন্নীত করেছেষ, এটিকে একটি "মানবতাবাদী" দৃষ্টিভঙ্গি বলে অভিহিত করেছেন।[২৮] অ্যালভিন হোয়াইটও এর সাথে যুক্ত কিন্তু একেবারে একই রকম নয়।[২৯] হার্শের একজন সহ-লেখক, ফিলিপ জে. ডেভিস, সামাজিক দৃষ্টিভঙ্গির প্রতিও সহানুভূতি প্রকাশ করেছেন।
গাণিতিক সত্যের প্রকৃত প্রকৃতি বা এমনকি প্রমাণের মতো গণিতবিদদের অনন্য অনুশীলনের বিষয়ে সংকীর্ণ বিতর্কে ফোকাস করার পরিবর্তে, ১৯৬০ থেকে ১৯৯০ এর দশক পর্যন্ত একটি ক্রমবর্ধমান আন্দোলন ভিত্তি খোঁজার চেষ্টা করে। কীভাবে গণিত কাজ করে, তারা সে ধারণার উত্তর খোঁজার চেষ্টা করেন। এর সূচনা বিন্দু ছিল ইউজিন উইগনারের বিখ্যাত ১৯৬০ সালের গবেষণাপত্র " প্রাকৃতিক বিজ্ঞানে গণিতের অযৌক্তিক কার্যকারিতা ", যেখানে তিনি যুক্তি দিয়েছিলেন যে গণিত এবং পদার্থবিদ্যার কাকতালীয় মিল এত ভালভাবে মিলে যাওয়াকে অযৌক্তিক এবং ব্যাখ্যা করা কঠিন বলে মনে হয়েছিল।
বাস্তববাদী এবং গঠনবাদী তত্ত্বগুলি সাধারণত বিপরীত হিসাবে নেওয়া হয়। যাইহোক, কার্ল পপার[৩০] যুক্তি দিয়েছিলেন যে একটি সংখ্যা বিবৃতি যেমন "২টি আপেল + ২টি আপেল = ৪টি আপেল" দুটি অর্থে নেওয়া যেতে পারে। এক অর্থে এটি অকাট্য এবং যৌক্তিকভাবে সত্য। দ্বিতীয় অর্থে এটি বাস্তবিকভাবে সত্য এবং মিথ্যা। এটি বুঝার আরেকটি উপায় হল যে একটি একক সংখ্যা বিবৃতি দুটি প্রস্তাব প্রকাশ করতে পারে: যার একটি গঠনবাদী মতবাদ অনুসারে ব্যাখ্যা করা যেতে পারে; অন্যটি বাস্তববাদী মতবাদ অনুসারে।[৩১]
বিংশ শতাব্দীতে ভাষার দর্শনের উদ্ভাবনগুলি গণিতকে বিজ্ঞানের ভাষা হিসাবে কেন প্রায়শই উল্লেখ করা হয় তা নিয়ে নতুন করে আগ্রহ জাগিয়ে তুলেছিল। যদিও কিছু গণিতবিদ এবং দার্শনিক " গণিত একটি ভাষা " বিবৃতিটি গ্রহণ করবেন, ভাষাবিদরা বিশ্বাস করেন যে এই জাতীয় বিবৃতির প্রভাব অবশ্যই বিবেচনা করা উচিত। উদাহরণস্বরূপ, ভাষাবিজ্ঞানের সরঞ্জামগুলি সাধারণত গণিতের প্রতীক পদ্ধতিতে প্রয়োগ করা হয় না, অর্থাৎ, গণিত অন্যান্য ভাষার থেকে একটি উল্লেখযোগ্যভাবে ভিন্ন উপায়ে অধ্যয়ন করা হয়। গণিত একটি ভাষা হলে, এটি প্রাকৃতিক ভাষা থেকে একটি ভিন্ন ধরনের ভাষা. প্রকৃতপক্ষে, স্বচ্ছতা এবং নির্দিষ্টতার প্রয়োজনের কারণে, ভাষাবিদদের দ্বারা অধ্যয়ন করা প্রাকৃতিক ভাষার তুলনায় গণিতের ভাষা অনেক বেশি সীমাবদ্ধ। যাইহোক, গাণিতিক ভাষা অধ্যয়নের জন্য ফ্রেজ এবং টারস্কি দ্বারা বিকশিত পদ্ধতিগুলি টারস্কির ছাত্র রিচার্ড মন্টেগ এবং অন্যান্য ভাষাবিদরা আনুষ্ঠানিক শব্দার্থবিদ্যায় কাজ করে তা দেখানোর জন্য ব্যাপকভাবে প্রসারিত করেছেন যে গাণিতিক ভাষা এবং প্রাকৃতিক ভাষার মধ্যে পার্থক্য ততটা মহান নাও হতে পারে যতটা মনে হয়।
মোহন গণেসালিঙ্গম আনুষ্ঠানিক ভাষাতত্ত্বের হাতিয়ার ব্যবহার করে গাণিতিক ভাষা বিশ্লেষণ করেছেন।[৩২] গণেসালিঙ্গম উল্লেখ করেছেন যে গাণিতিক ভাষা (যেমন কাল ) বিশ্লেষণ করার সময় প্রাকৃতিক ভাষার কিছু বৈশিষ্ট্য প্রয়োজন হয় না, তবে একই বিশ্লেষণমূলক অনেক সরঞ্জাম ব্যবহার করা যেতে পারে (যেমন প্রসঙ্গ-মুক্ত ব্যাকরণ )। একটি গুরুত্বপূর্ণ পার্থক্য হল যে গাণিতিক বস্তুগুলির স্পষ্টভাবে সংজ্ঞায়িত প্রকার রয়েছে, যা একটি পাঠ্যে স্পষ্টভাবে সংজ্ঞায়িত করা যেতে পারে: "কার্যকরভাবে, আমরা একটি বাক্যের একটি অংশে একটি শব্দ প্রবর্তন করতে এবং অন্যটিতে এটির বক্তব্যের অংশ ঘোষণা করতে পারি; এবং এই অপারেশনটিকে প্রাকৃতিক ভাষায় রুপান্তরিত করার কোন উপায় নেই।"[৩২]:২৫১
কুইন এবং হিলারি পুটনামের সাথে যুক্ত এই যুক্তিটিকে স্টিফেন ইয়াবলো সংখ্যা এবং সেটের মতো বিমূর্ত গাণিতিক সত্তার অস্তিত্বের স্বীকৃতির পক্ষে সবচেয়ে চ্যালেঞ্জিং যুক্তিগুলির মধ্যে একটি বলে মনে করেন।[৩৩] যুক্তিসমূহ নিম্নরূপ:
প্ল্যাটোনিজমের বিরুদ্ধে বাস্তববাদী বিরোধী " জ্ঞানী যুক্তি " তৈরি করেছেন পল বেনাসেরাফ এবং হার্ট্রি ফিল্ড। প্লেটোনিজম বিশ্বাস করে যে গাণিতিক বস্তুগুলি বিমূর্ত সত্তা। সাধারণ চুক্তি অনুসারে, বিমূর্ত সত্তাগুলি কংক্রিট, ভৌত সত্ত্বাগুলির সাথে কার্যকারণে যোগাযোগ করতে পারে না ( "আমাদের গাণিতিক দাবির সত্য-মূল্যগুলি স্থান-কালের বাইরে একটি রাজ্যে বসবাসকারী প্লেটোনিক সত্তাগুলির সাথে জড়িত তথ্যের উপর নির্ভর করে[৩৫]" )। যদিও কংক্রিট সম্পর্কে আমাদের জ্ঞান, ভৌত বস্তু আমাদের উপলব্ধি করার ক্ষমতার উপর ভিত্তি করেতাদের, এবং সেইজন্য তাদের সাথে কার্যকারণভাবে যোগাযোগ করার জন্য, গণিতবিদরা কীভাবে বিমূর্ত বস্তুর জ্ঞান অর্জন করেন তার কোনও সমান্তরাল বিবরণ নেই।[৩৬][৩৭][৩৮] এটি প্রমাণ করার আরেকটি উপায় হল যে প্লেটোনিক জগৎ যদি অদৃশ্য হয়ে যায়, তাহলে গণিতবিদদের প্রমাণ ইত্যাদি তৈরি করার ক্ষমতার কোন পার্থক্য হবে না। কিন্তু এসব এখন প্রমাণিত।
ফিল্ড তার দৃষ্টিভঙ্গিকে কল্পনাবাদে বিকশিত করেছেন। বেনাসেরাফ গাণিতিক কাঠামোবাদের দর্শনও বিকশিত করেছিলেন, যার মতে কোন গাণিতিক বস্তু নেই। তবুও, কাঠামোবাদের কিছু সংস্করণ বাস্তববাদের কিছু সংস্করণের সাথে সামঞ্জস্যপূর্ণ।
যুক্তিটি এই ধারণার উপর নির্ভর করে যে সমস্ত কিছুর সাথে গাণিতিক যুক্তির জন্য মস্তিষ্কের প্রক্রিয়াগুলির পরিপ্রেক্ষিতে চিন্তার প্রক্রিয়াগুলির একটি সন্তোষজনক প্রাকৃতিক বিবরণ দেওয়া যেতে পারে। প্রমাণের একটি অংশ হল এটি বজায় রাখা যে এটি মিথ্যা, যাতে গাণিতিক যুক্তি কিছু বিশেষ অন্তর্দৃষ্টি ব্যবহার করে যা প্লেটোনিক রাজ্যের সাথে জড়িত। এই যুক্তির একটি আধুনিক রূপ দিয়েছেন স্যার রজার পেনরোজ।[৩৯]
যুক্তির আরেকটি অংশ হল বিমূর্ত বস্তুগুলি গাণিতিক যুক্তির সাথে এমনভাবে প্রাসঙ্গিক যা অ-কারণমূলক, এবং উপলব্ধির সাথে সাদৃশ্যপূর্ণ নয়। এই যুক্তিটি জেরোল্ড কাটজ তার ২০০০ বইয়ের বাস্তববাদী যুক্তিবাদে তৈরি করেছেন।
আরও একটি যুক্তি হল ভৌত বাস্তবতাকে অস্বীকার করা, অর্থাৎ গাণিতিক মহাবিশ্বের অনুমান। সেক্ষেত্রে, একজন গণিতজ্ঞের গণিতের জ্ঞান অনুযায়ী একটি গাণিতিক বস্তু অন্যটির সাথে যোগাযোগ তৈরি করে।
অনেক অনুশীলনকারী গণিতবিদ তাদের বিষয়ের প্রতি আকৃষ্ট হয়েছেন কারণ তারা এতে উপলব্ধি করেন সৌন্দর্যের অনুভূতি। কেউ কখনও কখনও এই অনুভূতি শুনতে পাওয়া যায় যে, গণিতবিদরা দর্শনকে দার্শনিকদের কাছে ছেড়ে দিতে এবং গণিতে ফিরে যেতে চান - যেখানে সম্ভবত, সৌন্দর্য নিহিত রয়েছে।
ঐশ্বরিক অনুপাতের উপর তার কাজটিতে, এইচই হান্টলি গণিতের একটি উপপাদ্যের অন্য কারো প্রমাণ পড়ার এবং বোঝার অনুভূতিকে শিল্পের একটি মাস্টারপিস দর্শকের সাথে সম্পর্কিত করেছেন - প্রমাণের পাঠকের বোঝার ক্ষেত্রে একই রকম উচ্ছ্বাসের অনুভূতি রয়েছে প্রমাণের মূল লেখক, যতটা তিনি যুক্তি দেন, একটি মাস্টারপিসের দর্শকের মূল চিত্রকর বা ভাস্কর্যের মতোই উচ্ছ্বাসের অনুভূতি থাকে। প্রকৃতপক্ষে, কেউ সাহিত্য হিসাবে গাণিতিক এবং বৈজ্ঞানিক লেখা অধ্যয়ন করতে পারেন।
ফিলিপ জে. ডেভিস এবং রুবেন হার্শ মন্তব্য করেছেন যে গাণিতিক সৌন্দর্যের অনুভূতি অনুশীলনকারী গণিতবিদদের মধ্যে সর্বজনীন। উদাহরণ স্বরূপ, তারা √২ এর অযৌক্তিকতার দুটি প্রমাণ প্রদান করে। প্রথমটি হল 'দ্বন্দ্ব পদ্ধতি' দ্বারা প্রমাণিত ঐতিহ্যগত প্রমাণ, যা ইউক্লিড আবিষ্কার করেছেন। দ্বিতীয়টি হল পাটিগণিতের মৌলিক উপপাদ্যের সাথে জড়িত একটি আরও প্রত্যক্ষ প্রমাণ। ডেভিস এবং হার্শ যুক্তি দেন যে গণিতবিদরা দ্বিতীয় প্রমাণটিকে আরও নান্দনিকভাবে আকর্ষণীয় বলে মনে করেন কারণ এটি সমস্যার প্রকৃতির কাছাকাছি যায়।
পল এরডস সবচেয়ে মার্জিত বা সুন্দর গাণিতিক প্রমাণ সংবলিত একটি অনুমানমূলক "বই" সম্পর্কে তার ধারণার জন্য সুপরিচিত ছিলেন। সার্বজনীন চুক্তি নেই যে একটি ফলাফলের একটি "সবচেয়ে মার্জিত" প্রমাণ আছে; গ্রেগরি চৈতিন এই ধারণার বিরুদ্ধে যুক্তি দিয়েছেন।
দার্শনিকরা কখনও কখনও গণিতবিদদের সৌন্দর্য বা কমনীয়তার অনুভূতির সমালোচনা করেছেন, সর্বোত্তমভাবে, অস্পষ্টভাবে বলা হয়েছে। একই টোকেন দ্বারা, যাইহোক, গণিতের দার্শনিকরা এমন বৈশিষ্ট্যগুলি চিহ্নিত করার চেষ্টা করেছেন যা একটি প্রমাণকে অন্যটির চেয়ে বেশি পছন্দসই করে তোলে যখন উভয়ই যৌক্তিকভাবে সঠিক।
গণিত সম্পর্কিত নন্দনতত্ত্বের আরেকটি দিক হল অনৈতিক বা অনুপযুক্ত বলে মনে করা উদ্দেশ্যে গণিতের সম্ভাব্য ব্যবহারের প্রতি গণিতবিদদের দৃষ্টিভঙ্গি। এই দৃষ্টিভঙ্গির সবচেয়ে পরিচিত প্রকাশটি জিএইচ হার্ডির বই এ ম্যাথমেটিশিয়ানস অ্যাপোলজিতে পাওয়া যায়, যেখানে হার্ডি যুক্তি দেন যে বিশুদ্ধ গণিত সুন্দরভাবে প্রয়োগকৃত গণিতের থেকে সুনির্দিষ্টভাবে উচ্চতর কারণ এটি যুদ্ধ এবং অনুরূপ পরিণতির জন্য ব্যবহার করা যায় না।