কৌণিক কম্পাঙ্ক | |
---|---|
সাধারণ প্রতীক | ω |
এসআই একক | রেডিয়ান প্রতি সেকেন্ড |
অন্যান্য একক | ঘূর্ণন প্রতি সেকেন্ড চক্র প্রতি সেকেন্ড |
এসআই মৌলিক এককে | s−1 |
সংকীর্ণ এবং ব্যাপক বৈশিষ্ট্য? | হ্যাঁ (কেবলমাত্র দৃঢ় বস্তুর ক্ষেত্রে প্রযোজ্য) |
সংকীর্ণ? | হ্যাঁ |
সংরক্ষিত? | না |
ছদ্ম ভেক্টর | |
অন্যান্য রাশি হতে উৎপত্তি | |
মাত্রা |
চিরায়ত বলবিজ্ঞান |
---|
বিষয়ের উপর একটি ধারাবাহিকের অংশ |
পদার্থবিজ্ঞানে, কৌণিক কম্পাঙ্ক (ইংরেজি: angular frequency; কৌণিক দ্রুতি, বৃত্তীয় কম্পাঙ্ক, অরবিটাল কম্পাঙ্ক, রেডিয়ান কম্পাঙ্ক এবং পালসেটান্স নামেও পরিচিত) দ্বারা ঘূর্ণন হারের স্কেলার পরিমাপ নির্দেশ করে। এটা দ্বারা প্রতি একক সময়ে কৌণিক সরণ (যেমন- ঘূর্ণন), অথবা কোন সাইন-সদৃশ তরঙ্গমুখের (sinusoidal wavefront) (যেমন- দোলন গতি এবং তরঙ্গ) দশা পরিবর্তনের হার, অথবা সাইন ফাংশনের আর্গুমেন্ট পরিবর্তনের হার বোঝায়। কৌণিক কম্পাঙ্ক (বা কৌণিক দ্রুতি) হচ্ছে ভেক্টর রাশি কৌণিক বেগ এর মান (magnitude)। ভেক্টর রাশি কৌণিক বেগের সমার্থক হিসেবে কখনো কখনো কৌণিক কম্পাঙ্ক ভেক্টর ব্যবহৃত হয়ে থাকে।[১]
একবার ঘূর্ণন হচ্ছে রেডিয়ান এর সমান, সুতরাং,[১][২]
যেখানে,
কৌণিক কম্পাঙ্ক বা কৌণিক দ্রুতি (রেডিয়ান প্রতি সেকেন্ড এককে)
পর্যায়কাল (সেকেন্ড এককে)
সাধারণ কম্পাঙ্ক (হার্জ (Hz; Hertz) এককে; কখনো কখনো (উচ্চারণ: নিউ) প্রতীক দ্বারা নির্দেশ করা হয়)।
এসআই পদ্ধতিতে, কৌণিক কম্পাঙ্ক সাধারণত রেডিয়ান প্রতি সেকেন্ড এককে প্রকাশ করা হয়, এমনকি যখন এটা কোন ঘূর্ণনের মান নির্দেশ করে না। মাত্রিক বিশ্লেষণের দৃষ্টিকোণ থেকে দেখলে, হার্জ (Hz) এককও সঠিক, কিন্তু বাস্তবে সেটা শুধু সাধারণ কম্পাঙ্ক এর ক্ষেত্রে ব্যবহৃত হয়, এবং এর ক্ষেত্রে প্রায় কখনোই নয়। কম্পাঙ্ক কিংবা প্ল্যাঙ্কের ধ্রুবক নিয়ে কাজ করার সময় বিভ্রান্তি এড়ানোর জন্য এই প্রথা মেনে চলা হয়, কেননা এসআই পদ্ধতিতে কৌণিক পরিমাপের একক (চক্র বা রেডিয়ান) ঊহ্য থাকে।[৩][৪][৫][৬][৭]
ডিজিটাল সংকেত প্রক্রিয়াকরণে, কৌণিক কম্পাঙ্ক নমুনা হার (sampling rate) দ্বারা স্বাভাবিক করা (normalization) যায়, যা থেকে স্বাভাবিকীকৃত কম্পাঙ্ক (normalized frequency) পাওয়া যায়।
কোন ঘূর্ণনরত অথবা আবর্তনশীল বস্তুর অক্ষ হতে দূরত্ব (), স্পর্শকীয় দ্রুতি (tangential speed, ) এবং ঘূর্ণনের কৌণিক কম্পাঙ্ক () পরস্পর সম্পর্কযুক্ত। বৃত্তাকার গতিতে চলমান কোন বস্তু, একক পর্যায়কাল () অতিবাহিত হওয়ার সময়কালে দূরত্ব অতিক্রম করে। এই দূরত্ব আবার ঐ বস্তুর বৃত্তাকার পথের পরিধি, এর সমান। এই দুই রাশিকে সমীকৃত করে এবং পর্যায়কাল ও কৌণিক কম্পাঙ্কের মধ্যকার সম্পর্ক ব্যবহার করে পাওয়া যায়:
।
একটি স্প্রিং এর সাথে সংযুক্ত কোন বস্তু স্পন্দিত হতে পারে। যদি স্প্রিংটিকে আদর্শ, ভরহীন ও বাধাহীন (no damping) বলে ধরে নেওয়া হয়, তাহলে এর গতি হবে সরল ছন্দিত স্পন্দন গতি। ঐ স্পন্দনের কম্পাঙ্ক হবে:[৮]
যেখানে,
বস্তুর ভর।
কে প্রাকৃতিক কম্পাঙ্ক বলা হয় (কখনো কখনো দ্বারা সূচিত করা হয়)।
বস্তু যখন স্পন্দনরত অবস্থায় থাকে, তখন এর ত্বরণ পাওয়া যায় নিম্নরূপে:
যেখানে, হচ্ছে সাম্যাবস্থা থেকে বস্তুর সরণ। "গতানুগতিক" ঘূর্ণন প্রতি সেকেন্ড কম্পাঙ্ক ব্যবহার করলে এই সমীকরণ দাঁড়ায়:
।
শ্রেণিতে সংযুক্ত কোন LC বর্তনীর অনুনাদী কৌণিক কম্পাঙ্ক হচ্ছে, বর্তনীর ধারকত্ব (capacitance, , ফ্যারাড এককে) এবং আবেশাঙ্ক (inductance, , এসআই একক হেনরিতে) এর গুণফলের গৌণিক বিপরীত (multiplicative inverse) রাশির বর্গমূলের সমান।[৯]
।
এই বর্তনীতে শ্রেণিতে রোধ যোগ করলে (যেমন- কোন কুণ্ডলীর তারের বাধাজনিত রোধ) এল-সি বর্তনীর অনুনাদী কম্পাঙ্কের কোন পরিতবর্তন হয় না। সমান্তরাল সংযোগ বর্তনীতে, ওপরের সমীকরণটি অনেক ক্ষেত্রেই কার্যকরী অনুমান হলেও, অনুনাদী কম্পাঙ্ক অবশ্য বর্তনীর সমান্তরাল উপাদানজনিত ক্ষয়ের ওপর নির্ভরশীল।
কৌণিক কম্পাঙ্ককে অনেক সময় শিথিলভাবে কম্পাঙ্ক হিসেবেই অভিহিত করা হয়ে থাকে, যদিও কড়াকড়িভাবে বললে, এই দুই রাশির মধ্যে গুণিতকের পার্থক্য রয়েছে।
angular frequency.