পদার্থবিজ্ঞানে এবং আরও সুনির্দিষ্টভাবে বললে বলা যায় বিশেষ আপেক্ষিকতা ও সাধারণ আপেক্ষিকতায় চার-বেগ হলো চার-মাত্রিক স্থানকালে[nb ১] একটি চার-ভেক্টর, যা বেগের আপেক্ষিক তত্ত্বীয় প্রতিরূপের প্রতিনিধিত্ব করে, যেখানে বেগ হলো কোনো স্থানে একটি ত্রিমাত্রিক ভেক্টর। এটি চিরায়ত বলবিদ্যায় সংজ্ঞায়িত ত্রিমাত্রিক বেগের মিনকোভস্কি স্থান-কালের জন্য সাধারণীকৃত রূপ।
ভৌত ঘটনাগুলো সময় এবং স্থানের গাণিতিক বিন্দুগুলোর সাথে, তথা এই বিন্দুগুলোর সবগুলো দিয়ে গঠিত ভৌত চার-মাত্রিক স্থান-কালের একটি গাণিতিক মডেলের সাথে সামঞ্জস্যপূর্ণ হয়। স্থান-কালের মধ্যে কোনো বস্তুর ইতিহাস একটি বক্ররেখাকে অনুসরণ করে। এই বক্ররেখাকে বলা হয় বিশ্বরেখা। যদি বস্তুটির এমন ভর থাকে যে এর দ্রুতি অবশ্যই আলোর দ্রুতির চেয়ে কম হয়, তাহলে বিশ্বরেখাটিকে বস্তুটির প্রকৃত সময় দ্বারা প্যারামিতিকরণ করা যেতে পারে। চার-বেগ হলো বক্ররেখা বরাবর প্রকৃত সময়ের সাপেক্ষে চার-অবস্থানের পরিবর্তনের হার। এর বিপরীতে, বেগ হলো, একজন পর্যবেক্ষকের পর্যবেক্ষণ ও সময়ের সাপেক্ষে, ত্রিমাত্রিক স্থানে বস্তুর অবস্থানের পরিবর্তনের হার।
একটি বস্তুর চার-বেগের মান বা ম্যাগনিচিউড সর্বদাই ±c2-এর সমান হবে, যেখানে c হচ্ছে আলোর দ্রুতি এবং যোগ বা বিয়োগ যে চিহ্নই প্রয়োগ করা হোক না কেন তা নির্ভর কররে মেট্রিক সিগনেচারের পছন্দের উপর। U একটি চার-বেগ হলে এর উপর মেট্রিক টেন্সর g প্রয়োগ করে প্রাপ্ত | | U | |2= U ⋅ U = gμνUνUμ রাশিটিই হচ্ছে এই চার-বেগের মান। একটি বস্তু স্থির থাকলে এর চার-বেগ U0 = c যুক্ত সময়-স্থানাঙ্কের দিকের সমান্তরাল হবে। ফলতঃ একটি চার-বেগ একটি বিশ্বরেখার এমন একটি স্পর্শক ভেক্টর যেখানে এটি একটি "স্বাভাবিকরণকৃত ভবিষ্যত-নির্দেশিত সময়-সদৃশ ভেক্টর", উপরন্তু এটি একটি কন্ট্রাভ্যারিয়েন্ট ভেক্টর। যদিও চার-বেগ একটি ভেক্টর, তাসত্ত্বেও দুটি চার-বেগ যোগ করলে নতুন কোনো চার-বেগ পাওয়া যাবে না: চার-বেগের স্থান নিজেই কোনো ভেক্টর স্থান নয়।[nb ২]
ত্রিমাত্রিক স্থানে জড় প্রসঙ্গ কাঠামোয় কোনো বস্তুর পথকে সময় t-এর তিনটি অবস্থানিক(স্থানের সাথে সংশ্লিষ্ট)-স্থানাঙ্ক ফাংশন xi(t)-এর শর্তাধীনে প্রকাশ করা যায়, যেখানে i হচ্ছে একটি সূচক যা 1, 2, 3 মানগুলো গ্রহণ করে।
ত্রিমাত্রিক অবস্থান ভেক্টরের তিনটি স্থানাঙ্ককে কলাম ভেক্টরের আকারে লিখলে আমরা পাব:
বিশ্বরেখার উপর যেকোনো বিন্দুতে বেগের (যে বেগ বক্ররেখার স্পর্শক) উপাংশগুলো হলো:
প্রতিটি উপাংশের সরল আকার হবে:
আইনস্টাইনের আপেক্ষিকতা তত্ত্বে একটি নির্দিষ্ট প্রসঙ্গ কাঠামোর সাপেক্ষে একটি বস্তুর গতিপথকে চারটি স্থানাঙ্ক ফাংশন xμ(τ) দ্বারা সংজ্ঞায়িত করা হয়, যেখানে μ হচ্ছে স্থান-কালের একটি সূচক, সময়ের মতো উপাংশের ক্ষেত্রে যার মান 0 এবং স্থানের মতো স্থানাঙ্কের ক্ষেত্রে যা 1, 2, 3। শূন্যতম উপাংশকে সময়ের স্থানাঙ্ক ও c-এর গুণফলরূপে সংজ্ঞায়িত করা হয়:
প্রতিটি ফাংশন τ প্যারামিটারটির উপর নির্ভর করে, যাকে বলা হয় প্রকৃত সময়। একটি কলাম ভেক্টরের আকারে লিখলে হবে:
আপেক্ষিক তত্ত্বের কাল দীর্ঘায়ন থেকে দেখা যায়, স্থানাঙ্ক সময় t এবং প্রকৃত সময় τ-এ ডিফারেনশিয়ালগুলো নিম্নরূপভাবে সম্পর্কযুক্ত:
যেখানে হচ্ছে লরেন্টজ ফ্যাক্টর এবং
লরেন্টজ ফ্যাক্টর হলো ত্রিমাত্রিক বেগ-ভেক্টর -এর ইউক্লিডীয় নর্মটির একটি ফাংশন, এবং
চার-বেগ হচ্ছে কোনো সময়-সদৃশ বিশ্বরেখার স্পর্শক চার-ভেক্টর। বিশ্বরেখার যেকোনো বিন্দুতে চার-বেগ -কে নিম্নোক্তভাবে সংজ্ঞায়িত করা হয়:
যেখানে হচ্ছে চার-অবস্থান এবং হচ্ছে প্রকৃত সময়।[১]
একটি বস্তুর প্রকৃত সময়কে ব্যবহার করে এখানে যে চার-বেগকে সংজ্ঞায়িত করা হয়েছে, ভরহীন বস্তুর (যেমন: আলোর দ্রুতিতে চলমান ফোটন) বিশ্বরেখার ক্ষেত্রে তার কোনো অস্তিত্ব নেই। উপরন্তু, স্পর্শক ভেক্টর যে ট্যাকিয়ন বিশ্বরেখায় স্থান-সদৃশ, সেই ট্যাকিয়ন বিশ্বরেখার জন্যও এই চার-বেগটি সংজ্ঞায়িত নয়।
সময় t এবং স্থানাঙ্ক সময় x0-এর মধ্যকার সম্পর্ককে দ্বারা সংজ্ঞায়িত করা হয়।
প্রকৃত সময় τ-এর সাপেক্ষে এর জন্য অন্তরজ বের করার মাধ্যমে বেগের উপাংশ Uμ-কে নির্ণয় করা হয়। μ = 0 এর জন্য যা:
এবং প্রকৃত সময়ের অন্য তিনটি উপাংশের ক্ষেত্রে μ = 1, 2, 3 এর জন্য বেগের যে Uμ উপাংশটি পাব:
এখানে, ব্যবকলনের শৃঙ্খল নিয়ম এবং নিম্নোক্ত সম্পর্কগুলো ব্যবহার করা হয়েছে:
ফলে, চার-বেগ -এর জন্য আমরা পাব:
চার-ভেক্টরের আদর্শ প্রতীকের মাধ্যমে লিখলে যা হবে:
যেখানে হচ্ছে সাময়িক উপাংশ এবং হচ্ছে অবস্থানগত বা স্থানিক উপাংশ।
সমলয়কৃত (synchronized) ঘড়ি এবং মাপকাঠির (যেগুলো সমতল স্থান-কালের একটি নির্দিষ্ট অংশের সাথে সম্পর্কযুক্ত) শর্তাধীনে, চার-বেগের তিনটি স্থান-সদৃশ উপাংশ, ভ্রমণরত একটি বস্তুর প্রকৃত বেগ কে সংজ্ঞায়িত করে। প্রকৃত বেগ হলো সেই হার, যেটি হচ্ছে "প্রসঙ্গ মানচিত্র কাঠামো"য় বস্তুর সঙ্গে ভ্রমণরত ঘড়িতে অতিবাহিত প্রতি একক প্রকৃত সময়ে অতিক্রান্ত দূরত্ব।
চারটি উপাংশের পরিবর্তে চার-বেগের কেবল এই তিনটি স্বাধীন উপাংশ থাকে, যেক্ষেত্রে অন্যান্য অধিকাংশ চার-ভেক্টরই চার-বেগ থেকে আলাদা। ফ্যাক্টরটি ত্রিমাত্রিক বেগ -এর একটি ফাংশন।
যখন, নির্দিষ্ট লরেন্টজ স্কেলারগুলোকে চার-বেগ দিয়ে গুণ করা হয়, তখন নতুন ভৌত চার-ভেক্টর পাওয়া যায়, যেখানে প্রতিটির নতুন ভৌত চার-ভেক্টরের চারটি সাধীন উপাংশ থাকে।
উদাহরণস্বরূপ:
কার্যকরভাবেই, ফ্যাক্টরটি লরেন্টজ স্কেলার অংশটির সাথে যুক্ত হয়, যাতে এটি নিচে দেওয়া ৪র্থ স্বাধীন উপাংশটি তৈরি করতে পারে:
স্থির কাঠামোর চার-অবস্থানের ডিফারেন্সিয়াল ব্যবহার করে চার-বেগের নিম্নোক্ত মান পাওয়া যায়:
সংক্ষেপে বলা যায়, যেকোনো বস্তুর ক্ষেত্রে চার-বেগের মান সর্বদাই একটি নির্ধারণকৃত ধ্রুবক (fixed constant):
চলন্ত কাঠামোয় একই নর্মটি যা হবে:
যাতে করে:
যা লরেন্টজ ফ্যাক্টরটির সংজ্ঞার সংকোচন ঘটায়।