Šaperoni su posebne proteinske molekule, poznate i kao molekulski pratitelji, koje pomažu u savijanju polipeptidnog lanca proteina, dovodeći ga u stabilnu konformaciju.[1][2] Učestvuju u postizanju potrebne trodimenzionalne strukture za delovanje proteina.[3] Veoma su značajni u stresnim prilikama , kao što je povišena temperatura, kada održavaju strukturu proteina u potrebnom obliku i sprječavaju proteinsku denaturaciju. Zbog ovog svojstva mnogi, ali svakako ne i svi, šaperoni spadaju u tzv. proteine toplotnog šoka (HSP: Heat Shock Proteins). Neki od šaperona nose specifičnu informaciju o uvijanju proteina u trodimenzijske strukture, bez koje ne mogu biti formirani. Takvi proteini ne ponašaju se u skladu sa Anfinsenovom hipotezom,[4] i ne mogu se spontano organizirati.
Neki šaperonski sistemi rade kao foldaze: podržavaju savijanje proteina na način ovisan o ATP-u (naprimjer, GroEL/GroES ili DnaK/DnaJ/GrpE sistem). Iako se većina novosintetiziranih proteina može saviti u odsustvu pratitelja, manjina ih to strogo zahtijeva. Ostali rade kao holdaze: oni vežu preklopne međuprodukte kako bi spriječili njihovo nakupljanje, naprimjer DnaJ ili Hsp33.[5] Šaperoni također mogu raditi kao disgenaze, tj. mogu komunicirati s aberantnim proteinskim sklopovima i vraćati ih monomerima.[6] Neki mogu pomoći u razgradnji proteina, vodeći proteine do sistema proteaza, kao što je sistem ubikvitin-proteasom u eukariotima.[7]
Mnogi šaperoni su proteini toplotnog šoka, odnosno proteini izraženi kao odgovor na povišene temperature ili druge ćelijske stresove.[8] Uzrok takvog ponašanja je taj što presavijanje proteina jako podliježe toploti, pa stoga neki pratitelji djeluju kako bi spriječili ili ispravili štetu nastalu pogrešnim savijanjem.
U funkciji pratitelja može biti važna makromolekulska gužva. Prenatrpano okruženje citosola može ubrzati proces presavijanja, jer će kompaktno presavijeni protein zauzimati manje volumena od njegovog rasklopljenog lanca.[9] Međutim, gužva može smanjiti prinos pravilno presavijenih proteina povećanjem agregacije proteina.[10][11] Gužvanje takođe može povećati efikasnost šaperonskih proteina kao što je GroEL,[12] što bi moglo da se suprotstavi smanjenju efikasnosti presavijanja.[13]
Više informacija o različitim tipovima i mehanizmima podskupine pratelja koji inkapsuliraju svoje preklopne podloge (npr. GroES) može se naći u članku šaperonini. Šaperonini se odlikuju složenom dvostruko prstenastom strukturom i nalaze se u prokariotima, u citosolu eukariota i u mitohondrijama.
Drugi tipovi pratitelja uključene su u transport preko membrane, naprimjer membrane mitohondrija i endoplazmatskog retikuluma (ER) u eukariotima. Bakterijska translokacijski – specifični šaperon održava novo sintetiziranih prekursora polipeptidnog lanca u translokacijski-kompetentne (općeniti se odvija) i vodi ih do translokona.[14]
Nastavlja se i otkrivanje novih funkcija šaperona, poput aktivnosti bakterijskih adhezina, indukcije agregacije prema neamiloidnim agregatima,[15] suzbijanja toksičnih proteinskih oligomera njihovim grupiranjem,[16][17] i u odgovoru na bolesti povezane sa agregacijom proteina[18](npr. vidi prion) i održavanje karcinoma).[19]
Šaperoni se nalaze, naprimjer, u endoplazmatskom retikulumu (ER), jer se sinteza proteina često javlja u ovom području.
U endoplazmatskom retikulumu (ER) postoje opći, lektinski i neklasični molekularni pratioci koji pomažu u savijanju protein.
Postoji mnogo različitih porodica pratitelja; svaka porodica na drugačiji način pomaže u presavijanju proteina. U bakterijama poput E. coli , mnogi od ovih proteina su visoko ispoljeni u uvjetima visokog stresa, naprimjer, kada se bakterija stavi na visoke temperature. Zato se za imenovanje ovih pratitelja u prošlosti se koristio pojam "protein proteina toplotnog šoka". Prefiks "Hsp" označava da je dati protein – protein toplotnog šoka.
Hsp60 (GroEL / GroES kompleks u E. coli) najbolje je okarakterizirani veliki (~ 1 MDa) šaperonski kompleks. GroEL je 14-merni dvostruki prsten sa hidrofobnim flasterom na svom otvaranju; toliko je velik da može primiti nativno preklapanje od 54 kDa GFP u svom lumenu. GroES je heptamer sa jednim prstenom koji se veže za GroEL u prisustvu ATP ili ADP. GroEL / GroES možda neće moći poništiti prethodno agregiranje, ali se nadmeće na putu pogrešnog savijanja i agregiranja. Takođe djeluje u matriksima mitohondrija kao molekularni pratitelj.
Hsp70 (DnaK u E. coli) je možda najbolje okarakterizirani mali (~ 70 kDa) pratitrlj.
Proteini Hsp70 pomažu proteinima Hsp40 (DnaJ u E. coli ), koji povećavaju stopu potrošnje ATP-a i aktivnost Hsp70-a.
Primijećeno je da povećana ekspresija proteina Hsp70 u ćeliji rezultira smanjenom tendencijom ka apoptozi.
Iako precizno mehaničko razumijevanje tek treba utvrditi, poznato je da Hsp70s imaju visoko afinitetno vezano stanje za nerazvijene proteine kada su vezani za ADP i niskoafinitetno vezano za ATP.
Smatra se da se mnogi Hsp70 gomilaju oko rasklopljene podloge, stabilizirajući je i sprečavajući agregaciju. sve dok se nerazvijena molekula ne savije pravilno, a u to vrijeme Hsp70 gube afinitet za molekulu i raspršuju se.[23] U eukariotima, Hsp70 djeluje i kao mitohondrijski i hloroplastni molekulski šaperon.
'Hsp90' (HtpG u E. coli ) može biti najmanje razumljiv pratitelj. Njegova molekulska težina je oko 90 kDa, a neophodna je za održivost eukariota (moguće i za prokariote).
Protein toplotnog šoka 90 (Hsp90) je molekulski je pratitelj koji je neophodan za aktiviranje mnogih signalnih proteina u eukariotskoj ćeliji.
Svaki Hsp90 ima domen koji veže ATP, srednji domen i dimerizacijski domen. Za njih se izvorno mislilo da se stežu na svoj supstratni protein (poznat i kao klijentski protein) nakon vezanja ATP-a, nedavno objavljene strukture Vaughan et al.I Ali et al. ukazuju na to da se proteini klijenta mogu eksterno vezati za i N-krajev i srednji domen Hsp90.[24][25]
Hsp90 također može zahtevati košaperon s-slične imunofiline, Sti1, p50 (Cdc37) i Aha1, a također sarađuje sa sistemom praćenja šaperonskog sistema .[26][27]
Hsp100 (porodica Clp u E. coli) proteini proučavani su in vivo i in vitro , zbog njihove sposobnosti ciljanja i razvijaju označene i pogrešno savijene proteine.
Proteini u porodici Hsp100/Clp čine velike heksamerne strukture sa aktivnošću odvijanja u prisustvu ATP-a. Smatra se da ovi proteini funkcioniraju kao šaperoni tako što procesno uvlače proteine klijenta kroz male pore od 20 Å (2 nm), dajući tako svakom klijent-proteinu drugu priliku da se presavije.
Neki od ovih Hsp100 pratitelja, poput ClpA i ClpX, povezuju se s dvostrukim prstenom tetradekamerne serin proteaze ClpP, pa umjesto da kataliziraju ponovno savijanje proteina klijenta, ovi kompleksi su odgovorni za ciljano uništavanje obilježenih i pogrešno uvijenih proteina.
Hsp104, Hsp100 Saccharomyces cerevisiae, neophodan je za razmnožavanje mnogih priona kvasca. Delecija gena HSP104 rezultira ćelijama koje nisu u stanju razmnožavati određene prione.
Geni bakteriofag (fag) T4 koji kodiraju protein s ulogom u određivanju strukture faga T4 identificirani su pomoću uslovnih smrtonosnih mutanata .[28] Većina ovih proteina pokazala se ili glavnim ili manjim strukturnim komponentama završene fagove čestice. Međutim, među genskim proizvodima (gps) neophodnim za okupljanje faga, Snustad [29] identificirao je grupu GPS-a koja djeluje katalitski, umjesto da se sami ugrade u fagovsku strukturu. Ti su gps bili gp26, gp31, gp38, gp51, gp28 i gp4. Gen 4 je sinonim sa genima 50 i 65, pa se gp može označiti kao gp4 (50) (65)]. Prva četiri od ovih šest genskih proizvoda od tada su prepoznati kao šaperonski proteini. Uz to, gp40, gp57A, gp63 i gpwac također su sada identificirani kao pratitelji.
Morfogeneza faga T4 podijeljen je na tri neovisna puta: put glave, repa i dugog repa vlakana kako su to detaljno objasnili Yap i Rossmann.[30]
Što se tiče morfogeneze glave, šaperon gp31 komunicira s bakterijskim šaperonom GroEL, kako bi promovirao pravilno presavijanje glavnog proteina kapside glave gp23.[30][31] Chaperone gp40 participates in the assembly of gp20, thus aiding in the formation of the connector complex that initiates head procapsid assembly.[30][31] Gp4 (50) (65), iako nije posebno naveden kao šaperon, djeluje katalitski kao nukleaza, koja se čini ključnom za morfogenezu cijepanjem upakovane DNK, kako bi se omogućilo spajanje glava s repovima.[32]
Tokom ukupnog sastavljanja repa, šaperonski proteini gp26 i gp51 neophodni su za sastavljanje glavčine osnovne ploče.[33] Gp57A is required for correct folding of gp12, a structural component of the baseplate short tail fibers.[33]
Sinteza vlakana dugog repa ovisi o proteinu šaperona gp57A koji je potreban za trimerizaciju gp34 i gp37, glavnih strukturnih proteina repnih vlakana.[30][31] The chaperone protein gp38 is also required for the proper folding of gp37.[33][34] Šaperonski proteini gp63 i gpwac koriste se za pričvršćivanje vlakana dugog repa na osnovnu ploču repa.[33]
Postoje mnogi poremećaji povezani s mutacijama gena koji kodiraju pratitelje (tj. multisistemsku proteinopatiju) koji mogu uticati na mišiće, kosti i / ili centralni nervni sistem.[35]