Personalizirana medicina, zvana i precizna medicina, je medicinski model koji razdvaja ljude u različite grupe—sa medicinskim odlukama, praksama, intervencijama i/ili proizvodima koji se prilagođavaju pojedinačnom pacijent,u na osnovu njegovog predviđenog odgovora ili rizika od bolesti.[1] Termini personalizirana medicina, precizna medicina, stratificirana medicina i P4 medicina koriste se naizmjenično za opisivanje ovog koncepta,[1][2] iako neki autori i organizacije koriste ove izraze odvojeno da ukažu na određene nijanse.[2]
Dok prilagođavanje načina liječenja pacijentima datira barem iz vremena Hipokrata,[3] termin je u porastu u upotrebi posljednjih godina s obzirom na porast novih dijagnostičkih i informatičkih pristupa koji pružaju razumijevanje molekulske osnove bolesti, posebno genomike. Ovo pruža jasnu bazu dokaza na osnovu koje se mogu stratificirati (grupisati) povezani pacijenti.[1][4][5]
Među 14 inicijativa Nacionalne akademije inženjerstva, koju sponzorira Nacionalna akademija inženjerstva (NAE), personalizirana medicina je identificirana kao ključni i perspektivni pristup za "postizanje optimalne individualne zdravstvene odluke", stoga prevazilaženje izazova "Inženjerstvo boljih lijekova".[6][7]
U personaliziranoj medicini, često se koristi dijagnostičko testiranje za odabir odgovarajućih i optimalnih terapija na osnovu konteksta pacijentovog genetičkog sadržaja ili druge molekulske ili ćelijske analize.[8] Upotreba genetičkih informacija imala je glavnu ulogu u određenim aspektima personalizirane medicine (npr. farmakogenomika), a termin je prvi put skovan u kontekstu genetike, iako se od tada proširio kako bi obuhvatio sve tipove mjera personalizacija,[8] uključujući korištenje proteomike,[9] analiza slika, teranostika zasnovana na nanočesticama,[10] između ostalih.
Precizna medicina (PM) je medicinski model koji predlaže prilagođavanje zdravstva, pri čemu su medicinske odluke, tretmani, prakse ili proizvodi prilagođeni podgrupama pacijenata, umjesto modela jedan lijek za sve.[11][12] U preciznoj medicini, dijagnostičko testiranje se često koristi za odabir odgovarajućih i optimalnih terapija na osnovu konteksta pacijentovog genetičkog sadržaja ili druge molekulske ili ćelijske analize.[13] Alati koji se koriste u preciznoj medicini mogu uključivati molekulsku dijagnostiku, snimanje i analitiku.[14][15] Objašnjavajući razliku od sličnog uobičajenog pojma „personalizirane medicine“, Nacionalni istraživački savjet objašnjava:
Precizna medicina se odnosi na prilagođavanje medicinskog tretmana individualnim karakteristikama svakog pacijenta. To ne znači doslovno stvaranje lijekova ili medicinskih uređaja koji su jedinstveni za pacijenta, već prije mogućnost klasificiranja pojedinaca u subpopulacije koje se razlikuju po svojoj osjetljivosti na određenu bolest, u biologiji ili prognozi bolesti koje mogu razviti, ili kao odgovor na određeni tretman. Preventivne ili terapijske intervencije se tada mogu koncentrirati na one koji će imati koristi, štedeći troškove i nuspojave za one koji neće. Iako se termin 'personalizirana medicina' također koristi za prenošenje ovog značenja, taj termin se ponekad pogrešno tumači kao da implicira da se jedinstveni tretmani mogu osmisliti za svakog pojedinca.[14]
S druge strane, upotreba termina "precizna medicina" može se proširiti izvan odabira liječenja i obuhvatiti stvaranje jedinstvenih medicinskih proizvoda za određene pojedince—naprimjer, "...pacientsko specifično tkivo ili organi za prilagođavanje tretmana za različite ljude."[16] Stoga se termin u praksi toliko preklapa sa "personalizovanom medicinom" da se često koriste naizmjenično.[17]
Svaka osoba ima jedinstvenu varijaciju ljudski genom|ljudskog genoma]].[18] Iako većina varijacija među pojedincima nema uticaja na zdravlje, zdravlje pojedinca proizlazi iz genetičke varijacije s ponašanjem i uticajima iz okoline..[19][20]
Savremeni napredak u personaliziranoj medicini oslanja se na tehnologiju koja potvrđuje temeljnu biologiju pacijenta, DNK, RNK ili proteine, što na kraju dovodi do potvrđivanja bolesti. Naprimjer, personalizirane tehnike kao što je sekvenciranje genoma mogu otkriti mutacije u DNK koje utiču na bolesti u rasponu od cistaste fibroze do raka. Drugi metod, zvani RNK-seq, može pokazati koji su RNK molekule uključene u specifične bolesti. Za razliku od DNK, nivoi RNK se mogu mijenjati kao odgovor na okolinu. Stoga, sekvenciranje RNK može pružiti šire razumijevanje zdravstvenog stanja osobe. Nedavne studije povezuju genetičke razlike između pojedinaca sa ekspresijom RNK,[21]translacijom,[22] i razinama proteina.[23]
Koncepti personalizirane medicine mogu se primijeniti na nove i transformativne pristupe zdravstvenoj zaštiti. Personalizirana zdravstvena njega zasniva se na dinamici sistemske biologije i koristi alate za predviđanje za procjenu zdravstvenih rizika i dizajniranje personaliziranih zdravstvenih planova, koji pomažu pacijentima da ublaže rizike, spriječe bolest i da ih precizno liječe kada se pojave. Koncepti personalizirane zdravstvene njege dobijaju sve veće prihvaćanje Uprava za veterane koja se obavezuje na personaliziranu, proaktivnu brigu vođenu pacijentima za sve veterane.[24] U nekim slučajevima personalizirana zdravstvena njega može biti prilagođena oznaci uzročnika bolesti, umjesto genetičkoj oznaci pacijenta; primjeri su bakterije ili virusi otporni na lijekove.[25]
Precizna medicina često uključuje primjenu panomske analize i sistemske biologije za analizu uzroka bolesti pojedinačnog pacijenta na molekulskom nivou, a zatim za korištenje ciljanih tretmana (moguće u kombinaciji) za rješavanje procesa bolesti kod tog pojedinačnog pacijenta. Odgovor pacijenta se zatim prati što je bliže moguće, često koristeći zamjenske mjere, kao što je opterećenje tumorom (u odnosu na stvarne ishode, kao što je petogodišnja stopa preživljavanja), i liječenje fino prilagođeno pacijentovom odgovoru.[26][27] Grana precizne medicine koja se bavi rakom naziva se „precizna onkologija“.[28][29] Oblast precizne medicine koja se odnosi na psihijatrijske poremećaje i mentalno zdravlje naziva se "precizna psihijatrija".[30][31]
Interpersonalne razlike molekulske patologije su raznolike, kao i međuljudske razlike u eksposomu, koje utiču na procese bolesti preko interaktoma unutar tkivnogmikrookruženja, različito od osobe do osobe. Kao teorijska osnova precizne medicine, „princip jedinstvene bolesti"[32] pojavio se da bi prihvatio sveprisutni fenomenheterogenoszietiologije i patogenezebolesti. Princip jedinstvene bolesti prvi je put opisan kod neoplazijskih bolesti kao princip jedinstvenog tumora.[33] Kako je ekspozom uobičajeni konceptepidemiologije, precizna medicina je isprepletena s molekulskom patološkom epidemiologijom, koja je sposobna identificirati potencijalne biomarkere za preciznu medicinu.[34]
Kako bi ljekari znali da li je mutacija povezana s određenom bolešću, istraživači često rade studiju pod nazivom "studija asocijacije širom genoma" (GWAS). GWAS studija će sagledati jednu bolest, a zatim sekvencirati genom mnogih pacijenata sa tom određenom bolešću, kako bi potražio zajedničke mutacije u genomu. Mutacije za koje je GWAS studija utvrđeno da su povezane s bolešću mogu se zatim koristiti za dijagnosticiranje te bolesti kod budućih pacijenata, gledanjem njihove sekvence genoma, kako bi se pronašla ta ista mutacija. Prvi GWAS, sproveden 2005. godine, proučavao je pacijente sa starosnom degeneracijom makule (ARMD).[35] Pronađene su dvije različite mutacije, od kojih svaka sadrži samo varijaciju samo po jednog nukleotida (nazvane jednonukleotidni polimorfizam, ili SNP-ovi), koje su bile povezane s ARMD-om. GWAS studije poput ove bile su vrlo uspješne u identifikaciji uobičajenih genetičkih varijacija povezanih s bolestima. Početkom 2014. godine završeno je preko 1.300 GWAS studija.[36]
Sposobnost pružanja preciznih lijekova pacijentima u rutinskim kliničkim uvjetima ovisi o dostupnosti testova molekulskog profiliranja, npr. individualno sekvenciranje klicineDNK.[37] Dok precizna medicina sadašnje individualizira liječenje uglavnomzasniva na osnovu genomskih testova (npr. Oncotype DX [38]), razvija se nekoliko obećavajućih tehnoloških modaliteta, od tehnika koje kombinuju spektrometriju i računarsku moć do snimanja efekata lijeka u tijelu u realnom vremenu.[39] Mnogi različiti aspekti precizne medicine testiraju se u istraživačkim okruženjima (npr. proteom, mikrobiom), ali se u rutinskoj praksi ne koriste svi dostupni inputi. Sposobnost prakticiranja precizne medicine također ovisi o dostupnim bazama znanja koje pomažu kliničarima da preduzmu akciju na osnovu rezultata testova.[40][41][42] Rane studije koje su primjenjivale preciznu medicinu zasnovanu na omici na kohorte osoba s nedijagnostikovanom bolešću dale su stopu dijagnoze ~35% sa ~1 od 5 novodijagnostikovanih koji su dobili preporuke u vezi s promjenama u terapiji.[43]
Što se tiče tretmana, PM može uključivati upotrebu prilagođenih medicinskih proizvoda kao što su kokteli lijekova proizvedeni slaganjem u apoteci.[44] or customized devices.[45] Također može spriječiti štetne interakcije lijekova, povećati ukupnu efikasnost pri propisivanju lijekova i smanjiti troškove povezane sa zdravstvenom skrbi.[46]
Pitanje ko ima koristi od javno finansirane genomike je važno pitanje javnog zdravlja i potrebna je pažnja kako bi se osiguralo da primjena genomske medicine dodatno ne učvrsti zabrinutost za socijalnu jednakost.[47]
Precizna medicina pomaže zdravstvenim radnicima da bolje razumiju mnoge stvari – uključujući okoliš, način života i naslijeđe – koje igraju ulogu u pacijentovom zdravlju, bolesti ili stanju. Ove informacije im omogućavaju da preciznije predvide koji će tretmani biti najefikasniji i sigurniji, ili eventualno kako spriječiti početak bolesti. Osim toga, prednosti su:
pomjeriti naglasak u medicini sa reakcije na prevenciju
predvidjeti podložnost bolesti
poboljšati otkrivanje bolesti
spriječiti napredovanje bolesti
prilagoditi strategije prevencije bolesti
propisati efikasnije lijekove
izbjegavati propisivanje lijekova s predvidljivim negativnim nuspojavama
smanjiti vrijeme, troškove i stopu neuspjeha farmaceutskih kliničkih ispitivanja
eliminirati neefikasnost pokušaja i greške koja povećava troškove zdravstvene zaštite i potkopava brigu o pacijentima.
^Priyadharshini VS, Teran LM (2016). "Personalized Medicine in Respiratory Disease". Chapter Five - Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology. 102. str. 115–146. doi:10.1016/bs.apcsb.2015.11.008. ISBN978-0-12-804795-8. PMID26827604.
^Splinter, Kimberly; Adams, David R.; Bacino, Carlos A.; Bellen, Hugo J.; Bernstein, Jonathan A.; Cheatle-Jarvela, Alys M.; Eng, Christine M.; Esteves, Cecilia; Gahl, William A.; Hamid, Rizwan; Jacob, Howard J.; Kikani, Bijal; Koeller, David M.; Kohane, Isaac S.; Lee, Brendan H.; Loscalzo, Joseph; Luo, Xi; McCray, Alexa T.; Metz, Thomas O.; Mulvihill, John J.; Nelson, Stanley F.; Palmer, Christina G.S.; Phillips, John A.; Pick, Leslie; Postlethwait, John H.; Reuter, Chloe; Shashi, Vandana; Sweetser, David A.; Tifft, Cynthia J.; Walley, Nicole M.; Wangler, Michael F.; Westerfield, Monte; Wheeler, Matthew T.; Wise, Anastasia L.; Worthey, Elizabeth A.; Yamamoto, Shinya; Ashley, Euan A.; Undiagnosed Diseases Network (29. 11. 2018). "Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease". New England Journal of Medicine. 379 (22): 2131–2139. doi:10.1056/NEJMoa1714458. PMC6481166. PMID30304647.