U kalkulusu, pravilo derivacije složene funkcije je formula za derivaciju kompozicije dvije funkcije.
U intuitivnim uvjetima, ako varijabla y zavisi od druge varijable u, koja, na kraju, zavisi od treće varijable x, tada se način promjene y o odnosu na x može izračunati kao promjena y o odnosu na u pomnoženo sa načinom promjene u u odnosu na x. Jednostavnije rečeno, derivacija složene funikcije računa se tako da se pomnoži derivacija glavne funkcije sa derivacijom podfunkcije unutar te glavne funkcije (pogledajte primjer I).
Pravilo derivacija složene funkcije kaže da je
koje se kraće piše u formi .
Alternativno, u Leibnizovoj notaciji, pravilo derivacije složene funkcije je
U integraciji, nasuprot pravilu derivacije složene funkcije, stoji pravilo substitucije.
Neka f i g budu funkcije i neka x bude broj takav da je f idiferencijabilna kod g(x) i da je g diferencijabilno kod x. Tada je definicija diferencijabilnosti,
gdje ε(δ) → 0 kada δ → 0. Slično,
gdje η(α) → 0 kada α → 0. Također definišimo[1] da je
Sada je
|
|
|
|
gdje je
Uočite da kada δ → 0, αδ/δ → g′(x) i αδ → 0, te zbog toga η(αδ) → 0. Slijedi da je
Razmotrimo . Imamo gdje je i Zbog toga,
|
|
|
|
Kako bi diferencirali trigonometrijsku funkciju
možemo pisati sa i . Tada dobijamo
pošto je i .
Difercencirajmo , itd.
- ^ Da bismo uočili da je ovo potrebno, pretpostavite, na pruimjer, da je g konstantna funkcija.