Ribosomski protein (r-protein ili rProtein[1][2][3]) je bilo koji od proteina koji, zajedno sa rRNL, čine ribosomskee podjedinice uključene u ćelijski proces translacijom. E. coli i ostale bakterije i Archaea imaju 30S malu podjedinicu i 50S veliku podjedinicu, dok ljudi i kvasci imaju 40S malu podjedinicu i 60S veliku podjedinicu.[4] Ekvivalentne podjedinice se često različito numeriraju između bakterija, arheja, kvasaca i ljudi.[5]
Veliki dio znanja o ovim organskim molekulama došao je iz proučavanja ribosoma E. coli. Svi ribosomski proteini su izolovani i proizvedena su mnoga specifična antitijela. Ovo, zajedno sa elektronskom mikroskopoijom i upotrebom određenih reaktivnih tvari, omogućilo je određivanje topografije proteina u ribosomu. U novije vrijeme, skoro potpuna (skoro)atomska slika ribosomskih proteina izlazi iz najnovijih krio-EM podataka visoke rezolucije (uključujući PDB 5AFI).
Ribosomski proteini su među najkonzerviranijim proteinima u svim životnim oblicima.[5] Među 40 proteina koji se nalaze u različitim malim ribosomskim podjedinicama (RPS), 15 podjedinica je univerzalno konzervirano među prokariotima i eukariotima. Međutim, sedam podjedinica nalazi se samo u bakterijama (bS21, bS6, bS16, bS18, bS20, bS21 i bTHX), dok se 17 podjedinica nalazi samo u arhejama i eukariotima.[5] Obično su 22 proteina pronađena u malim podjedinicama bakterija i 32 u kvascima, ljudima i najvjerovatnije većini drugih eukariotskih vrsta. Dvadeset i sedam (od 32) proteina eukariotske male ribosomske podjedinice proteina je također prisutno u arhejama (nijedan ribosomski protein se ne nalazi isključivo u arhejama), što potvrđuje da su bliži eukariotima nego bakterijama.[5]
Među velikim ribosomskim podjedinicama (RPL), 18 proteina je univerzalnih, tj. nalaze se u bakterijama, eukariotima i arhejama. U bakterijama nalazi se samo 14 proteina, dok se 27 proteina nalazi samo u arhejama i eukariotima. Opet, arheje nemaju proteine jedinstvene za njih.[5]
Unatoč njihovoj visokoj konzerviranosti tokom milijardi godina evolucije, nepostojanje nekoliko ribosomskih proteina u određenim vrstama pokazuje da su ribosomske podjedinice dodane i izgubljene tokom evolucije. To se također odražava činjenicom da se nekoliko ribosomskih proteina ne čini esencijalnim kada se deletiraju.[7] Naprimjer, kod E. coli devet ribosomskih proteina (uL15, bL21, uL24, bL27, uL29, uL30, bL34, uS9 i uS17) nisu bitni za preživljavanje nakon delecije. Uzevši zajedno s prethodnim rezultatima, 22 od 54 ribosomskih proteina E. coli ribosomski geni mogu se pojedinačno deletirati iz genoma.[8] Slično tome, 16 ribosomskih proteina (uL1, bL9, uL15, uL22, uL23, bL28, uL29, bL32, bL33.1, bL33.2, bL34, bL35, bL36, bS6, bS20 i bS21) uspješno je deletirano u Bacillus subtilis. U vezi s prethodnim izvještajima, pokazalo se da su 22 ribosomska proteina nebitna u B. subtilis, barem za ćelijsku proliferaciju.[9]
Ribosom E. coli ima oko 22 proteina u maloj podjedinici (označenoj od S1 do S22) i 33 proteina u velikoj podjedinici (pomalo kontraintuitivno nazvanoj L1 do L36). Svi su različiti sa tri izuzetka: jedan protein se nalazi u obje podjedinice (S20 i L26), L7 i L12 su acetilirani i metilirani oblici istog proteina, a L8 je kompleks L7/L12 i L10. Osim toga, poznato je da L31 postoji u dva oblika, puna dužina na 7,9 kilodaltona (kDa) i fragmentirana na 7,0 kDa. Zbog toga je broj proteina u ribosomu 56. Osim S1 (molekulske težine 61,2 kDa), ostali proteini imaju težinu između 4,4 i 29,7 kDa.[10]
Nedavni de novo proteomički eksperimenti u kojima su autori okarakterizirali "in vivo" intermedijere sastavljanja ribosoma i povezane faktore sastavljanja iz ćelija divljeg tipa Escherichia coli, koristeći pristup opće kvantitativne masene spektrometrije (qMS), potvrdili su prisutnost svih poznatih komponenti malih i velikih podjedinica i identificirali su ukupno 21 poznati i potencijalno novi faktor sastavljanja ribosoma koji se kolokalizira s različitim ribosomskim česticama.[11]
U maloj (30S) podjedinici ribosoma E. coli, proteini označeni kao uS4, uS7, uS8, uS15, uS17, bS20 vezuju se nezavisno za 16S rRNK. Nakon sklapanja ovih primarnih vezujućih proteina, uS5, bS6, uS9, uS12, uS13, bS16, bS18 i uS19 vezuju se za rastući ribosom. Ovi proteini također potenciraju dodavanje uS2, uS3, uS10, uS11, uS14 i bS21. Vezivanje proteina za spiralne spojeve važno je za pokretanje ispravnog tercijalnog nabora RNK i za organizaciju cjelokupne strukture. Gotovo svi proteini sadrže jednu ili više globulastih domena. Štaviše, skoro svi sadrže dugačke ekstenzije koje mogu kontaktirati RNK u dalekosežnim regijama. Dodatna stabilizacija je rezultat osnovnih ostataka proteina, jer oni neutraliziraju odbijanje naboja RNK okosnice. Postoje također Interakcije protein-protein, da bi strukturu držale na okupu elektrostatskim interakcijama i interakcijama vodikove veze. Teorijska istraživanja su ukazala na korelirane efekte vezivanja proteina na afinitete vezivanja tokom procesa sklapanja.[12]
U jednoj studiji, otkriveno je da neto naboji (pri pH 7,4) ribosomskih proteina koji čine visoko konzervirani klaster S10-spc imaju inverznu vezu sa nivoima halofilnosti/halotolerancije kod bakterija i arheja.[13] U nehalofilnim bakterijama, S10-spc proteini su općenito bazični, u suprotnosti sa ukupnim kiselim cijelim proteomima ekstremno halofila. Univerzalni uL2 koji leži u najstarijem dijelu ribozoma, uvijek je pozitivno nabijen, bez obzira na soj/organizam kojem pripada.[13]
Ribosomi kod eukariota sadrže 79-80 proteina i četiri ribosomalne RNA (rRNA) molekule. Opšti ili specijalizovani šaperoni solubiliziraju ribosomske proteine i olakšavaju njihov unos u ćelijsko jedro. Čini se da sastavljanje eukariotskog ribosoma pokreću ribosomski proteini in vivo kada sklapanje također pomažu šaperoni. Većina ribosomskih proteina sastavlja se sa rRNK kotranskripcijski, postajući stabilnije povezani kako se sklapanje odvija, a aktivna mjesta obje podjedinice se konstruiraju posljednja.[5]
U prošlosti su se različite nomenklature koristile za isti ribosomski protein u različitim organizmima. Ne samo da imena nisu bila konzistentna na svim domenima; imena su se također razlikovala između organizama unutar domena, kao što su ljudi i S. cervisiae, oba eukariota. To je bilo zbog toga što su istraživači dodijelili imena prije nego što su sekvence bile poznate, što je izazvalo probleme za kasnija istraživanja. Sljedeće tabele koriste unificiranu nomenklaturu Ban et al., 2014. Istu nomenklaturu koristi UniProt "porodični" kustos.[5]
Općenito, ćelijski ribosomski proteini se nazivaju jednostavno korištenjem unakrsnog imena domena, npr. "uL14" za ono što se sada naziva L23 kod ljudi. Za organelne verzije se koristi sufiks, tako da se "uL14m" odnosi na ljudski mitohondrijski uL14 (MRPL14).[5] Proteini specifični za organele koriste svoje vlastite prefikse unakrsnih domena, za primjer "mS33" za MRPS33[14](Tabela S3,S4) i "cL37" za PSRP5.[15](Tablela S2,S3) (Vidi dva naveedna citata, također djelimično od strane Bana N, za nomenklature organela.)
|pmc=
(pomoć). PMID 34908470 Provjerite vrijednost parametra |pmid=
(pomoć).