Tireotropinski receptor ili TSH receptor je receptor (i pridruženi protein) koji odgovara na tireoid-stimulirajući hormon (znan i kao tirotropin) i stimulira prloizvodnju tiroksina (T4) i trijodotironina (T3). TSH receptor je član G-protein spregnutih receptora, nadporodice integralni membranski proteini[5] i povezan je sa proteinom Gs proteinom.[6]
Prvenstveno se nalazi na površini epitelnih ćelija štitnjače, ali se također nalazi i u masnom tkivu i fibroblastima. Ovo posljednje objašnjava razlog za nalaz miksedema tokom Gravesove bolesti. Osim toga, također je utvrđeno da se eksprimira u prednjem režnju hipofize, hipotalamusu i bubrezima. Njegovo prisustvo u hipofizi može biti uključeno u posredovanje inhibicije povratne signalizacije signala tireotropina uz os hipotalamusno-hipofizno-tiroidne osovine.[7]
Kakinuma i Nagayama (2002) utvrdili su da gen TSHR sadrži 13 egzona.[8] Akamizu et al. (1990) mapirali su gen TSHRna ljudskom hromosom 14|hromosomu 14]], u studiji hibridne DNK somatskih ćelija. Putem hibridizacije in situ, Rousseau-Merck et al. (1990) i Libert et al. (1990) regionalizirali su ovj gen na poziciju 14q31.[9][10]
Akamizu et al. (1990) mapirali su mišji gen Tshr na hromosomu 12, proučavanjem povezanosti u interspecijskom unatražnom ukrštanju miševa. Wilkie et al. (1993) također su lokalizirali mišji gen Tshr na hromosomu 12.[11][12]
Nagayama et al. (1989) izolirali su TSHR cDNK iz biblioteke ljudskih cDNK štitnjače. Izvedeni protein 764 aminokiselina ima molekulsku masu od 86,8 kD i sadrži signalni peptid, sedam transmembranskih regija, petn potencijalnih mjesta glikozilacije i kratko intracitoplazmatsko područje. TSHR cDNK kodira funkcionalni receptor koji aktivira adenilat-ciklazu kao odgovor na TSH.[13]
Libert et al. (1989) koristili su pseću Tshr cDNK za izolaciju ljudske TSHR cDNK iz biblioteke cDNK štitnjače. cDNK kodira zaključeni protein od 744 aminokiseline sa 90,3% homologije sa proteinom psa. Identificirana su dva glavna transkripta iRNK od 4,6 i 4,4 kb, što ukazuje na [[alternativna prerada RNK|alternativnu preradu.
Analizom nekoliko TSHR cDNK klonova, Misrahi et al. (1990) utvrdili su da zreli TSHR polipeptid sadrži 743 aminokiseline s izračunatom molekulskom masom od 84,5 kD. Pretpostavljeni TSH-receptor ima vanćelijski domen s 394 ostatka, transmembranski domen s 266 ostataka i unutarćelijsk domenu s 83 ostatka. Autori su zapazili visok stepen homologije sa luteinizirajućim hormonom/horiogonadotropinskim receptorom (LHCGR). Kakinuma i Nagayama (2002) otkrili su da gen TSHR može eksprimirati najmanje pet alternativno prerađenih oblika.
Homologija visokih sekvenci sa LHCG receptorom, koji se sastoji od jednog polipeptidnog lanca, dovela je mnoge do pretpostavke o sličnoj strukturi za TSH receptor. Međutim, Loosfelt i et al. (1992) predstavili su dokaze o heterodimernoj strukturi TSHR -a. vanćelijka (vezana za hormone) alfa podjedinica imala je prividnu molekulsku masu od 53 kD, dok je beta podjedinica koja se proteže kroz membranu djelovala heterogeno i imala je prividnu molekulsku masu od 33 do 42 kD. Ljudske membrane štitnjače sadržavale su 2,5 do 3 puta više beta podjedinica od alfa podjedinica; međutim, dvije podjedinice vjerovatno potuču od jednog gena, budući da je kloniranjem i sekvenciranjem cDNK demonstriran jedan otvoreni okvir čitanja. Bilo je teško definirati tačno mjesto cijepanja koje rezultira u dvije podjedinice.
TSH receptor je antigen na meti autoantitijela u Gravesovoj bolesti. PCR amplifikacijom specifične cDNA, Feliciello et al. (1993) pokazali su da se zrela receptorska TSH iRNK eksprimira u retroorbitalnom tkivu i zdravih ispitanika i pacijenata s Gravesovom bolešću. Od ostalih testiranih tkiva i ćelija, samo je tkivo štitnjače ispoljilo TSHR iRNK. Nalazi su pružili vezu između zahvaćenosti orbite i bolesti štitnjače kod Gravesove bolesti.[14] Graves et al. (1999) koristili su monoklonska i poliklonska antitijela mapirana epitopima na TSHR kao imunoblot sonde za otkrivanje i karakterizaciju molekulskih tipova receptora, prisutnih u normalnom ljudskom tkivu štitnjače. U smanjenim membranskim frakcijama otkrivene su holoreceptor cijele dužine (necijepane) i podjedinice holoreceptora izvedene cijepanjem. Necjepani tipovi holoreceptora uključivali su neglikozilirani oblik prividne molekulske mase 85 kD i dva glikozilirana oblika od približno 110 i 120 kD. Membrane su također sadržavale nekoliko oblika TSHR alfa i beta podjedinica, izvedenih cijepanjem. Alfa podjedinice otkrivena su antitijelima na epitope lokalizirane unutar N-terminalnog kraja TSHR ektodomana i difuzno su migrirale između 45 i 55 kD, odražavajući različito glikozilirani status. Bilo je prisutno nekoliko tipova beta-podjedinica, a najbrojnije su imale prividne molekulske mase 50, 40 i 30 kD. Autori su zaključili da se posttranslacijska obrada TSHR -a događa u ljudskom tkivu štitnjače i uključuje više mjesta cijepanja.[15]
Lazar et al. (1999) proučavali su ekspresiju četiri gena specifična za štitnjaču (simptom natrij-jodida (NIS, ili SLC5A5), tiroidna peroksidaza (TPO;), tiroglobulin (TG) i TSHR, kao i kodiranje gena transporter glukoze-1 (GLUT1 ili SLC2A1) u 90 tkiva štitne žlijezde čovjeka.[16] Informacijske RNK ekstrahirane su iz 43 karcinoma štitnjače (38 papilarnih i petfolikularnih), 24 hladna adenoma, 5 Gravesovih tkiva štitnjače, osam toksičnih adenoma i pet hiperplazijskih tkiva štitnjače. Referentno je pet normalnih tkiva štitnjače. Korišten je kinetički kvantitativn metod PCR-a, zasnovan na fluorescentnoj TaqMan metodologiji i mjerenju fluorescencije u stvarnom vremenu. Ekspresija NIS -a smanjena je u 40 od 43 (93%) karcinoma štitnjače i u 20 od 24 (83%) hladnih adenoma; povećan je kod toksičnih adenoma i Gravesovog tkiva štitnjače. Ekspresija TPO bila je smanjena kod rak štitnjače|karcinoma štitnjače]], ali je bila normalna kod hladnih adenoma; povećan je kod toksičnih adenoma i Gravesovog tkiva štitnjače. Ekspresija TG bila je smanjena u karcinomima štitnjače, ali je bila normalna u ostalim tkivima. Ekspresija TSHR -a bila je normalna u većini ispitivanih tkiva i smanjena je samo u nekim karcinomima štitnjače. U tkivima karcinoma štitnjače utvrđen je pozitivan odnos između individualnih nivoa ekspresije NIS, TPO, TG i TSHR. Nije utvrđena veza s dobi pacijenta. Viši stadiji tumora (stadiji veći od I u odnosu na stadij I) bili su povezani s nižom ekspresijom NIS -a i TPO-a. Ekspresija gena GLUT1 povećana je u jednom od 24 (4%) adenoma i u osam od 43 (19%) in vivo karcinoma štitnjače. Kod šest pacijenata sa tim karcinomom, proučavan je unos 131-I. Ekspresija NIS-a bila je niska u svim uzorcima, a tri pacijenta s normalnom ekspresijom GLUT1 imala su apsorpciju 131-I u metastazama, dok druga tri pacijenta s povećanom ekspresijom gena GLUT1 nisu imala uočljiv unos 131-I. Autori su zaključili da se (1) smanjena ekspresija gena NIS javlja u većini hipofunkcionalnih benignih i malignih tumora štitnjače, (2) postoji diferencijalna regulacija ekspresije gena specifičnih za štitnjaču i (3) povećana ekspresija GLUT1 u nekim zloćudnim tumorima može ukazati na ulogu tragača derivata glukoze u otkrivanju metastaza karcinoma štitnjače in vivo skeniranjem pozitronskoemisijske tomografije.
Chia et al (2007) proučavali su dijagnostičku vrijednost cirkulirajuće TSHR iRNK za predoperativno otkrivanje diferenciranog karcinoma štitnjače (DTC) kod pacijenata s čvorovima. Na osnovu citologije/patologije, 88 pacijenata imalo je DTC, a 119 benigno oboljenje štitnjače. Nivoi TSHR iRNK kod pacijenata sa rakom bili su značajno veći nego kod benigne bolesti (p<0,0001). Pri graničnoj vrijednosti od 1,02 ng/g ukupne RNK, TSHR iRNK je ispravno klasifikovala 78,7% pacijenata predoperativno (osetljivost = 72,0%; specifičnost = 82,5%). Zaključili su da iRNK TSHR, mjerena aspiracijama tankim iglama, poboljšava predoperativno otkrivanje raka kod pacijenata sa čvorovima štitnjače, smanjujući nepotrebne operacije, a neposredni postoperativni nivoi mogu predvidjeti zaostalu/metastatsku bolest.[17]
Duprez ET AL (1994) pokazali su heterozigotne konstitutivno aktivirajuće mutacije zametne linije u TSHR genu kod pacijenata sa nasljednom neautoimunskom hipertireozom . Funkcionalne karakteristike ove dvije mutacije bile su slične onima koje su već ranije opisane za autonomno funkcionirajuće adenome štitnjače (Van Sande et al., 1995), te su na taj način objasnile razvoj hiperplazije štitnjače i hipertireoze u oboljelih pacijenata.
Paschke i Ludgate (1997) pronašli su izvještaje o četvero dojenčadi sa sporadičnim kongenitalnim hipertireoidizmom, nastalim de novo mutacijom zametne linije. U svim slučajevima oba su roditelja bila eutireoidna. Autori su primijetili da su brojne mutacije povećanja funkcije primijećene kao somatske mutacije u hiperfunkcionalnim adenomima štitnjače i u porodičnom autosomno dominantnom hipertireoidizmu. Opisali su konstitutivno aktivirajuće i inaktivacijske mutacije gena TSHR, kao i lokaciju somatskih mutacija koje se nalaze u karcinomima štitnjače. Na nekim lokacijama je opisano nekoliko različitih zamjena aminokiselina. Većina mutacija povećanja funkcije bila je u egzonu 10.[18]
Nakon vezivanja cirkulirajućeg TSH, signalna kaskada G-proteina aktivira adenilil-ciklazu i zaste unutarćelijski nivo cAMP-a. cAMP aktivira sve funkcionalne aspekte ćelija štitnjače, uključujući pumpanje joda. Aktiviraju se sinteza tiroglobulina, jodiranje, endocitoza i proteoliza tiroidna peroksidaza i otpuštanje hormona.
ReceptorTSH razlikuje se od LHCG-receptora prisustvom dvije jedinstvene nsercije od osam i 50 aminokiselina u vanćelijskom domenu. Wadsworth et ali. (1990) pokazali su da je sekvenca od osam aminokiselina blizu amino završetka TSH receptora važno mjesto interakcije i sa TSH i sa autoantitijelima protiv TSH receptora (imunoglobulini koji stimuliraju štitnjaču, TSI). Delecijom ili zamjenom ove regije prekinuta je interakcija, dok delecija selvence od 50 aminokiselina nije imala učinka.
Susjedan sa 5-primarnim krajem elementa transkripcijskog faktora-1 (TTF1) štitne žlijezde uzvodno i unutar promotora TSHR-a, element je na nekodirajućem lancu s jednolančanom veznom aktivnošću koji je važan za regulaciju ekspresije TSHR-a. Ohmori et al. (1996) identifikovali su cDNK koja kodira jednolančani vezujući protein (SSBP), zvani SSBP1, koji sa ovim elementom čini specifičan kompleks na nekodirajućoj niti TSHR. SSBP1 je sveprisutni transkripcijski faktor koji doprinosi maksimalnoj ekspresiji TSHR -a, a analize mutacija pokazale su da je motiv GXXXXG važan za funkciju vezanja i pojačivača SSBP1. Autori su zaključili da uobičajeni transkripcijski faktori reguliraju TSHR i ekspresiju gena velike histokompatibilnosti. Također su zaključili da je SSBP1 član porodice SSBP -a koji stupaju u interakciju s RNK i s promotorom retrovirusa, te su važni u obradi RNK. Članovi ove porodice također mogu komunicirati sa c-myc, genom povezanim sa rastom i replikacijom DNK.[19]
Šablon:G-proteinski receptori Šablon:Neuropeptidni receptori Šablon:Peptidergici