Šaperoninska porodica TCP-1/cpn60
[1] | |
---|---|
Identifikatori | |
Simbol | Cpn60/TCP1 |
OMIM | 118190 |
PDB | Proteinska banka podataka Proteinska banka podataka |
HSP60, poznat i kao šaperonini (Cpn), porodica je proteina toplotnog šoka, prvobitno sortirana po molekulskoj masi od 60 kDa. Sprečavaju pogrešno savijanje proteina za vrijeme stresnih situacija. kao što je velika vrućina, pomažući u savijanju proteina. HSP60 pripadaju velikoj klasi molekula koje pomažu u savijanju proteina, zvanim molekulski šaperoni.[2][3]
Novoproizvedeni proteini obično moraju se presavti iz linearnog lanca aminokiselina u trodimenzijska tercijarna struktura. Energiju za savijanje proteina daje adenozin-trifosfat (ATP). Šaperoninski proteini mogu također označiti da se pogrešno savijeni proteini razgrađuju.
Struktura ovih pratitela podsjeća na dvije krofne naslagane jednu na drugu kako bi stvorile bačvu. Svaki prsten sastoji se od 7, 8 ili 9 podjedinica, ovisno o organizmu u kojem se šaperonin nalazi. Svaki peptidni lanac od ~ 60kDa može se podijeliti u tri domena, apikalni, srednji i ekvatorijalni.[4]
Pretpostavlja se da je originalni šapronin evoluirao iz peroksiredoksina.[5]
Šaperonini grupe I (Cpn60), porodica GroEL, prema InterPro, naziva se Cpn60. Međutim, CDD za označavanje proteina Grupe II koristi Cpn60 u arhejama. Nalaze seu bakterijama, kao i organelaa endosimbiotskog porijekla: hloroplasti i mitohondrije.
Kompleks GroEL / GroES u E. coli je šaperonin grupe I i najbolje karakterizirani veliki (~1 MDa) kompleks šaperonina.
GroEL/GroES možda neće moći poništiti proteinske agregate, ali se kinetički natječe na putu pogrešnog savijanja i agregacije, sprečavajući tako stvaranje agregata.[6]
Potporodica Cpn60 otkrivena je 1998.[7] Sekvencirana je 1992. Za oligomere cpn10 i cpn60 potreban je također Mg2+-ATP, da bi se interakcija stvorila u funkcionalni kompleks.[8] Vezinje cpn10 na cpn60 inhibira slabu ATPaznu aktivnost cpn60.[9]
Član ove porodice je protein koji veže podjedinicu RuBisCO. Kristalna struktura GroEL-a Escherichia coli je 2,8 Å.[10]
Neke bakterije koriste više kopija ovog šaperonina, vjerovatno za različite peptide.
Grupa II šaperonina (TCP-1), slabije je okarakterizirana, pronađena je u eukariotskom citosolu i arhejama.
Šaperonin (Mm cpn) kod Methanococcus maripaludis sastoji se od šesnaest identičnih podjedinica (osam po prstenu). Dokazano je da presavija mitohondrijski protein rodan; međutim, još uvijek nisu identificirani prirodni supstrati.[12]
Grupa II šaperonina ne smatra se da koriste kofaktor tipa GroES za presavijanje svojih podloga. Umjesto toga, sadrže "ugrađeni" poklopac koji se zatvara na način ovisan o ATP-u, da bi enkapsulirao svoje supstrate, postupak koji je potreban za optimalnu aktivnost presavijanja proteina. Oni također stupaju u interakciju sa parnjakom, prefoldinom, koji pomaže u presavijanju podloge.
Grupa III uključuje neke bakterijske Cpns, koji su povezani sa grupom II. Imaju poklopac, ali njegovo otvaranje kod njih ne se može usklađivati. Smatra se da su drevni srodnici grupe II.
Šapronin grupe I gp146 iz faga EL ne koristi poklopac, a njegov krofnoliki interfejs sličniji je grupi II. Mogao bi predstavljati još jednu drevnu vrstu šapronina.[13]
Šaperonini se podvrgavaju velikim konformacijskim promjenama tokom reakcije presavijanja u funkciji enzimske hidrolize ATP-a, kao i vezanja supstrata proteina i košaperonina, kao što je GroES. Te konformacijske promjene omogućavaju šaperoninu da veže nerazvijeni ili pogrešno savijeni protein, inkapsulira taj protein unutar jedne od šupljina, formiranih od dva prstena i oslobađa protein natrag u rastvor. Po oslobađanju, supstratni protein će se ili saviti ili će mu trebati daljnje presavijanje; u tom slučaju ga opet može vezati šaperonin.
Tačan mehanizam pomoću kojeg šaperonini olakšavaju savijanje supstrata proteina je nepoznat. Prema nedavnim analizama različitim eksperimentalnim tehnikama, proteini supstrata vezani za GroEL naseljavaju ansambl kompaktnih i lokalno proširenih stanja, kojima nedostaju stabilne tercijarne interakcije.[14] Predložen je niz modela djelovanja šaperonina, koji se uglavnom fokusiraju na dvije (ne međusobno isključujuće) uloge njihove unutrašnjosti: pasivne i aktivne. Pasivni modeli tretiraju kafez sa šaperoninom kao inertan oblik, vršeći uticaj smanjenjem konformacijskog prostora dostupnog proteinskom supstratu ili sprj ečavanjem međimolekulaskih interakcija, npr. prevencijom agregacije.[15] Aktivna uloga šaperonina zauzvrat je uključena u specifične interakcije šaperonin–supstrat, koje se mogu povezati s konformacijskim preuređivanjem šaperonina.[16][17][18]
Vjerovatno najpopularniji model aktivne uloge šaperonina je iteraktivni mehanizam žarenja (IAM) koji se fokusira na učinak interativnog i hidrofobnog vezanja proteinskog supstrata za šaperonin. Prema proračunskim simulacijskim studijama, IAM dovodi do produktivnijeg savijanja, rasklapanjem supstrata od pogrešno presavijenih konformacija ili sprečavanjem pogrešnog savijanja proteina promjenom puta savijanja.
Kao što je spomenuto, sve ćelije sadrže šaperonine.
Ovi proteinski kompleksi neophodni za život u E. coli , Saccharomyces cerevisiae i viših eukariota. Iako postoje razlike između eukariotskih, bakterijskih i arhejskih šaperonina, opća struktura i mehanizam su očuvani.
Genski proizvod 31 (gp31) bakteriofag T4 je protein potreban za morfogenezu bakteriofaga koji djeluje katalitski, umjesto da se ugradi u strukturu bakteriofaga.[19] Bakterija E. coli je domaćin bakteriofaga T4. Izgleda da je protein gp31 kodiran iz bakteriofaga homologan s košaperoninskim proteinom GroES E. coli i sposoban je da ga zamijeni u sklopu viriona faga T4, tokom infekcije.[20] Kao i GroES, gp31 sa GroEL šaperoninom tvori stabilan kompleks, koji je apsolutno neophodan za savijanje i sastavljanje in vivo glavnog kapsidnog proteina gp23 bakteriofaga.
Glavni razlog zašto fagu treba vlastiti GroES homolog je taj što je protein gp23 prevelik da bi se uklopio u konvencijski GroES kafez; gp31 ima duže petlje koje stvaraju viši kontejner.[21]
Ljudski GroEL je imunodominantni antigen pacijenata sa Legionarskom bolešću,[22] i smatra se da ima ulogu u zaštiti bakterija Legionella od kisika radikala unutar makrofaga. Ova hipoteza temelji se na otkriću da je gen cpn60 pojačano reguliran kao odgovor na vodik-peroksid, izvor radikala kiseika. Također je utvrđeno da Cpn60 pokazuje jaku antigenost kod mnogih bakterijskih vrsta[23] i ima potencijal za indukciju imunske zaštite od nepovezanih bakterijskih infekcija.
Primjeri uključuju ljudske kodirajuće gene zaproteine koji sadrže ove domene: