L'alumanur de liti, també anomenat hidrur d'alumini i liti, és un compost iònic format per anions alumanur, , i cations liti, , de fórmula . S'utilitza en la síntesi d'altres productes químics, com a catalitzador de polimerització, com a font d'hidrogen, , i com a propulsor. Reacciona violentament amb l'aigua, alliberant hidrogen.
Fou descobert el 1947 per A.E. Finholt, A.C. Bond i H.I. Schlesinger de la Universitat de Chicago,[1] durant una investigació sobre els hidrurs de bor.
El és un sòlid blanc, però en les preparacions comercials es presenta lleugerament gris a causa de petites quantitats de contaminants.[2] Aquest material es pot purificar per recristal·lització en dietilèter. El material pur és pirofòric però no els seus grans cristalls.[3]
Es descompon lentament per a donar i hidrur de liti, . Si s'escalfa no es fon sinó que, a uns 150 °C, es descompon.[4]
El reacciona violentament amb l'aigua, incloent-hi la de la humitat atmosfèrica, amb despreniment d'hidrogen, la qual cosa proporciona un mètode útil per generar hidrogen en el laboratori. L'equació d'aquesta reacció és:[2][6]
Els anions alumanur, , tenen estructura tetragonal amb un àtom d'alumini enllaçat mitjançant enllaços covalents a quatre hidrògens situats als quatre vèrtexs del tetraedre. Aquest anió interacciona mitjançant atracció electroestàtica amb els cations liti, .
A temperatura ambient i pressió atmosfèrica el es presenta en forma de sòlid que cristal·litza en el grup monoclínicP21/c, i s'anomena forma , que conté quatre grups en la cel·la unitat. Si s'incrementa la pressió a 2,6 GPa es transforma en la forma d'estructura tetragonal (grup espacial I41/a), amb només dos grups en la cel·la unitat. A uns 33,86 GPa s'obté la forma amb quatre grups dins la cel·la unitat d'estructura ortoròmbica (grup espacial Pmna).[7]
Actualment, la síntesi industrial utilitza sodi, alumini i hidrogen a gran pressió i temperatura per a produir l'alumanur de sodi, . Posteriorment, es tracta amb clorur de liti, , dissolt en dietilèter per obtindre el :[4]
Es fa servir molt en la química orgànica com agent reductor.[2] Sovint com a solució en dietilèter i tractat amb àcid convertirà èsters, àcids carboxílics, clorurs d'acil, aldehids i cetones en els seus corresponents alcohols. De manera similar converteix l'amida,[8][9] compostos nitro, nitril, imines, oximes,[10] i azides en amines.
El s'usa comunament per reduir els èsters[11][12] i àcids carboxílics[13] a alcohols primaris; abans de la utilització de era una conversió difícil.
En química inorgànica el es fa servir molt per preparar hidrurs de metall a partir dels corresponents halurs.
També s'han investigat com a possible acumulador d'hidrogen.
↑ 1,01,1Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. «Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry». Journal of the American Chemical Society, 69, 5, 1947, pàg. 1199–1203. DOI: 10.1021/ja01197a061.
↑Pohanish, R. P.. Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens. 5th. William Andrew Publishing, 2008, p. 1540. ISBN 978-0-8155-1553-1.