Biografia | |
---|---|
Naixement | (it) Francesco Cavalieri 1598 Milà (Casal d'Àustria) |
Mort | 30 novembre 1647 (48/49 anys) Bolonya (Estats Pontificis) |
Sepultura | Santa Maria della Mascarella 44° 29′ 59″ N, 11° 21′ 00″ E / 44.4996011°N,11.35008°E |
Prior Santa Maria della Mascarella | |
1629 – 1647 | |
Dades personals | |
Religió | Catolicisme |
Formació | Universitat de Pisa (–1619) |
Director de tesi | Benedetto Castelli |
Activitat | |
Camp de treball | Matemàtiques, física i astrologia |
Ocupació | matemàtic, religiós cristià, astrònom, teòleg |
Ocupador | Universitat de Bolonya (1629–1646) |
Alumnes | Stjepan Gradić i Stefano degli Angeli |
Influències | |
Orde religiós | Jesuats |
Obra | |
Obres destacables | |
Estudiant doctoral | Pietro Mengoli |
Bonaventura Cavalieri (Milà, 1598 - Bolonya, 30 de novembre de 1647) fou un jesuat[1] i matemàtic italià, seguidor de Galileu i autor del mètode dels indivisibles.
No es coneix del cert la data del seu naixement, però pels anys que tenia en morir sembla que va ser el 1598. El seu nom, Bonaventura, el va adoptar en ingressar a l'orde dels jesuats, el 1615 a Milà. El 1616 va ser transferit al monestir jesuat de Pisa, on va conèixer Benedetto Castelli, professor de matemàtiques en la universitat d'aquesta ciutat i ajudant de Galileo Galilei.[2] Castelli el va estimular en l'estudi de la geometria a través de les obres d'Euclides, d'Arquimedes, d'Apol·loni i de Pappos. Castelli el va presentar a Galileu, del qui sempre es va considerar deixeble i amb qui va mantenir una nodrida correspondència, de la qual es conserven 112 cartes entre ambdós personatges.[3]
El 1621, va ser ordenat diaca del cardenal Federigo Borromeo a Milà, on també va ser professor de teologia al Monestir de San Girolamo. Segurament va ser en aquesta època on va començar a desenvolupar les seves idees sobre el mètode dels indivisibles. Entre 1623 i 1626 va ser prior del monestir de Sant Pere a Lodi, ciutat propera a Milà, i de 1626 a 1629 al monestir dels jesuats de Parma on va intentar, sense èxit, ser professor de la seva universitat.[5]
En 1629 va ser nomenat professor de matemàtiques en la Universitat de Bolonya[6] amb el suport de Galileu, qui va glossar la seva figura a Cesare Marsili, un membre de l'Accademia dei Lincei que havia estat comissionat per trobar un professor de matemàtiques per aquella institució. Cavalieri va mantenir aquesta posició fins a la seva mort, compatibilitzant-la amb el seu càrrec de prior del monestir dels jesuats a Bolonya, a l'església de Santa Maria della Mascarella.
Totes les seves obres es van publicar mentre era professor a Bolonya, encara que algunes estaven acabades anteriorment:
Cavalieri és conegut, sobretot, per introduir el denominat mètode dels indivisibles, un precursor de l'actual càlcul infinitesimal. Aquest mètode és explicat en la seva segona obra, Geometria indivisibilibus continuorum, i matisat i ampliat en la darrera, Exercitationes geometricae sex.[8]
La idea bàsica de Cavalieri[9] és que totes les línies d'una figura plana es poden definir com . De la mateixa manera, tots els plans d'una figura sòlida es poden definir com .[10] Cavalieri és força curós en no confondre amb , ja que això implicaria una contradicció lògica: els plans no estan compostos per línies, són continus;[11] ni els sòlids composts per plans. Els conceptes totes les línies i tots els plans no són una mera juxtaposició de línies o plans que formen plans o sòlids respectivament.
La base dels seus càlculs és, doncs, el que avui es coneix com a Principi de Cavalieri: Si dues figues planes tenen la mateixa altitud i les seccions fetes per línies paral·leles a la base a les mateixes distàncies tenen sempre la mateixa proporció, aleshores, les figures tenen aquesta proporció.[12][13]
Paul Guldin, en el tercer llibre del seu Centrobaryca, va criticar fortament aquest mètode[14] afirmant que era molt diferent de l'utilitzat per Kepler en la seva Nova Stereometria.[15] Per això, Cavalieri va dedicar l'exercici III del seu Exercitationes a respondre les objeccions de Guldin.