L'oscil·lador de van der Pol va ser descrit per l'enginyer i físic Balthasar van der Pol mentre treballava a la casa Philips.[2] Van der Pol va trobar oscil·lacions estables, que va anomenar oscil·lacions de relaxació,[3] conegudes en l'actualitat com cicles límit, en circuits que usaven vàlvules de buit. Quan aquests circuits es fan funcionar a prop del cicle límit entren en acoblament i el senyal entra en fase amb el corrent. Van der Pol i la seva companya, van der Mark, van informar en la data de setembre de 1927 de Nature[4] que, per a determinades freqüències, apareixia un soroll irregular, sempre a prop de les freqüències d'acoblament. Va ser un dels primers descobriments experimentals de la Teoria del caos.[5]
El teorema de Liénard demostra que el sistema té un cicle límit. Aplicant la transformació de Liénard , en què el '.' indica derivada, l'equació es pot escriure en forma bidimensional:[9]
Quan μ > 0, el sistema arribarà a un cicle límit, en el qual es conservarà l'energia. A prop de l'origen x = dx / dt = 0 el sistema és inestable, i lluny de l'origen hi ha amortiment.
↑Greenberg, Michael D. Advanced Engineering Mathematics (en anglès). 2a. Upper Saddle River, Nova Jersey: Prentice Hall, 1998, p. 372. ISBN 0-13-321431-1.