V čisté podobě jde o bezbarvou kapalinu, komerční vzorky mívají žlutohnědé zabarvení.[7][8] Jedná se o důležitou složku řady epoxidových pryskyřic. Přidáním dalšího bisfenolu A a katalyzátoru a následným zahřátím vzniknou bisfenol A-glycidyletherové pryskyřice o vysokých molekulových hmotnostech, které jsou pevné.[9]
Tato látka se vyrábí O-alkylacíbisfenolu Aepichlorhydrinem. Hlavním produktem je přitom bisfenol A-diglycidylether, ale vzniká i několik oligomerů. Míra polymerizace může být i 0,1.[10] Důležitou vlastností epoxidových pryskyřic je obsah peroxidových skupin, vyjadřovaný epoxidovým číslem, tedy počtem epoxidových ekvivalentů v 1 kg pryskyřice, nebo ekvivalentní hmotností, tedy počtu gramů pryskyřice, které obsahují 1 mol epoxidových skupin. Protože jsou nesymetrické epoxidy chirální, tak bis-epoxid vytváří tři stereoizomery; ty se ale obvykle neoddělují.
Obdobně DGEBA reaguje s kyselinou akrylovou za vzniku vinylesterových pryskyřic. Při reakci se otevírá epoxidový kruh, čímž vznikají na každém konci molekuly nenasycené esterové skupiny. Vzniklý materiál se ředí styrenem a přeměňuje na pryskyřici.
Epoxidové pryskyřice patří mezi termosety, a lze je vytvrzovat vhodnými činidly, která vytvoří překřížené vazby; nejčastějšími činidly jsou zde polyaminy, aminoamidy a fenoly.[11]
Hydrolýzou etherových vazeb se uvolňuje bisfenol A, který je také endokrinní disruptor.[13][14] Od 90. let 20. století se objevují obavy, že epoxidové pryskyřice obsahující BADGE a používané jako materiály na obaly potravin se do těchto potravin mohou uvolňovat.[13][15]
Bisfenol A-diglycidyletherové epoxidy se používají jako nátěry na vnitřních stranách potravinových konzerv. Tyto sloučeniny a jejich analogy a konjugáty byly podrobně otestovány, k čemuž bylo vyvinuto několik analytických metod.[16][17]
↑Herman Mark. Encyclopedia of Polymer Science and Technology. [s.l.]: [s.n.], 2013-10-16. ISBN9780470073698. Kapitola Epoxy Resins.
↑Forrest, M. J.: Coatings and Inks for Food Contact Materials, RAPRA review reports, vol. 16, no. 6 (2005), p.8
↑Dongqi Wang; Haoduo Zhao; Xunchang Fei; Shane Allen Synder; Mingliang Fang; Min Liu. A comprehensive review on the analytical method, occurrence, transformation and toxicity of a reactive pollutant: BADGE. Environment International. 2021, s. 106701. DOI10.1016/j.envint.2021.106701. PMID34146765.
↑ abWalfried Rauter, Gerald Dickinger, Rudolf Zihlarz and Josef Lintschinger, "Determination of Bisphenol A diglycidyl ether (BADGE) and its hydrolysis products in canned oily foods from the Austrian market", Z. Lebensm. Unters. Forsch. A 208 (1999) 208–211
↑Leitlinie zur hygienischen Beurteilung von organischen Beschichtungen im Kontakt mit Trinkwasser (Beschichtungsleitlinie) [online]. [cit. 2016-03-16]. Dostupné v archivu pořízeném dne 2017-01-09.
↑Nancy Anne M. Berdasco; Charles H. Powell. Patty's Toxicology. Příprava vydání Eula Bingham, Barbara Cohrssen,. Hoboken, NJ, USA: John Wiley & Sons, 2012-08-17. Dostupné online. ISBN978-0-471-12547-1. DOI10.1002/0471435139.tox083.pub2. Kapitola Epoxy Compounds: Aromatic Diglycidyl Ethers, Polyglycidyl Ethers, Glycidyl Esters, and Miscellaneous Epoxy Compounds.
↑Monika Beszterda; Magdalena Tądrowska; Rafał Frański. Multi-detection method for the fast screening of bisphenol A diglycidyl ether conjugates in the can-coating material. Journal of Coatings Technology and Research. 2022, s. 1901–1907. Dostupné online. ISSN1935-3804. DOI10.1007/s11998-022-00668-0.