Funkce je diferencovatelná, pokud se dá na okolí každého bodu aproximovat lineární funkcí, odpovídající tečné přímce nebo rovině. Znamená to, že funkce je spojitá, nemá "hroty" a v žádném směru neroste nekonečně rychle.
Funkce jedné reálné proměnné jsou diferencovatelné, pokud mají v daném bodě konečnou derivaci.
Ilustrativní příklady:
není diferencovatelná v nule, neboť tam má "hrot".
. Tato funkce není diferencovatelná v bodě . Spojitá je všude v , ale v nule nekonečně rychle roste.
má obě parciální derivace v (0, 0) (a dokonce i všechny derivace ve směru) a je v tomto bodě spojitá, ale ne diferencovatelná, neboť nemá tečnou rovinu (rovina {z=y} neaproximuje funkci dostatečně v bodech x=y).
Funkce f je diferencovatelná na množině M, pokud pro každé existuje její diferenciál. Funkce je spojitě diferencovatelná, pokud se diferenciál mění bod od bodu spojitě. Funkce f definovaná na otevřené množině U je k krát spojitě diferencovatelná, pokud má všechny parciální derivace k-tého řádu spojité. Značíme .
Funkce je v bodě diferencovatelná právě tehdy, existuje-li konečná derivace funkce v bodě . Konečnost derivace je důležitá, neboť například funkce signum má v nule nekonečnou derivaci, ale ne diferenciál.
Funkce je na diferencovatelná na intervalu s krajními body , jestliže jsou splněny tyto tři podmínky:
Tedy funkce na jednorozměrném intervalu je diferencovatelná, pokud má konečnou derivaci ve všech vnitřních bodech i konečné jednostranné derivace v obou koncových bodech intervalu.
Funkce f je spojitě diferencovatelná, pokud její derivace f' je spojitá.
Někdy se diferencovatelnost uvažuje jen na otevřených intervalech, a pak v definici není druhá a třetí podmínka.
Postačující podmínka pro existenci diferenciálu funkce v bodě c je existence a spojitost parciálních derivací f na okolí c. Diferenciál se obvykle definuje na vnitřních bodech definičního oboru. Pokud existují na otevřené množině spojité parciální derivace f podle všech proměnných, je f spojitě diferencovatelná.