Průnik libovolného souboru konvexních množin je konvexní. To umožňuje pro libovolnou množinu definovat její konvexní obal jako průnik všech jejích konvexních nadmnožin. Je to její nejmenší konvexní nadmnožina (ve smyslu inkluze).
Sjednocení konvexních množin obecně není konvexní, např. sjednocení dvou různých jednobodových množin není konvexní.
Mějme konvexní množinu ve vektorovém prostoru a z ní libovolně vyberme nějaké vektory. Pak tato množina obsahuje všechny možné konvexní kombinace těchto vektorů. Neboli, konvexní množina je uzavřená na konvexní kombinace svých prvků.