Similarity Matrix of Proteins nebo častěji SIMAP je BOINC projekt, který slouží k výzkumu funkcí proteinů. Aplikace simap hledá pomocí FASTA heuristiky (jejíž výsledky jsou zpřesněny pomocí Smith-Watermanova algoritmu[1][2]) podobnosti v primární struktuře proteinů, aplikace hmmer využívající skryté Markovovy modely (Hidden Markov Models) lokalizuje v proteinu jednotlivé domény.[3] Zdroje dat pro SIMAP@home představují veřejně přístupné vědecké databáze jako UniProt, RCSB PDB, GenBank nebo RefSeq shromažďující informace o struktuře a funkci dosud objevených proteinů. Pro odhad proteinových domén se využívá informací o známých doménách a sekvenčních vzorech z databáze InterPro.[4] Výsledky výpočtů se ukládají do veřejně přístupné vědecké databáze.
Studium proteinů je základem pro pochopení biologických procesů v živých organismech. Má uplatnění v medicíně a farmaceutickém průmyslu, molekulární biologii, biochemii, genetice, bioinženýrství, nanotechnologiích, atd.[5] Počet každoročně objevených proteinů velmi rychle roste, avšak jen u zlomku z nich je známo jejich působení v organismu.[6] Experimentální ověřování funkcí proteinů je zdlouhavé a velmi nákladné. Velké množství proteinů má však podobné funkce.[7] SIMAP@home vytváří databázi, v které jsou uloženy informace o vzájemné podobnosti známých i nově objevených proteinů. Tato databáze pak slouží jako základ k dalšímu výzkumu.
Proteiny (bílkoviny) jsou základní stavební jednotkou organismu. Jsou tvořeny řetězci aminokyselin (tj. molekul obsahující funkční skupiny -NH2 a -COOH) spojených navzájem peptidickou vazbou. V organismu plní důležité funkce[8], mimo jiné:
proteinů je tvořena pořadím aminokyselin, které protein tvoří. Pořadí aminokyselin je zakódováno v DNA. SIMAP@home se snaží pomocí shody v pořadí aminokyselin (=sekvenční shoda) u proteinů najít tzv.homologní proteiny. Sekvence jsou homologní, jestliže jsou odvozeny od stejné původní sekvence. Například pokud se nějaká linie živočichů v průběhu evoluce rozdělí na dvě vývojové větve, bude každá vývojová větev zprvu obsahovat podobné geny kódující podobné proteiny s podobnou nebo stejnou funkcí.[11] Pokud je sekvenční shoda dvou proteinů vyšší než 45 %[12], lze předpokládat, že proteiny budou mít podobnou i prostorovou strukturu a funkci.
Sekundární struktura proteinů vzniká lokálním "sbalením" částí proteinů v důsledku vytváření vodíkových můstků mezi karbonylovými a imidovými skupinami v proteinu. Je určena typickým tvarem částí proteinů, nejčastěji:
Terciární strukturu proteinů v SIMAP@home počítá aplikace hmmer. Rozlišují se supersekundární struktura a proteinové domény.
vzniká když je protein tvořen dvěma nebo více polypeptidickými řetězci, které jsou spojeny nekovalentními vazbami. Příkladem může být hemoglobin, který je tvořen čtyřmi vlákny (viz obrázek - otevře se po kliknutí na odkaz u hemoglobinu).
Databáze obsahovala v roce 2007 více než 17 milionů proteinů. Databáze SIMAP je aktualizována každý měsíc, a proto jsou nové jednotky pro SIMAP@home připraveny obvykle vždy k začátku nového měsíce. V současnosti má projekt dostatečnou počítačovou kapacitu, avšak potřeba výpočetního času (především pro aplikaci hmmer) se postupně stále zvyšuje.
Aplikace SIMAP@home běží pod systémy Windows, Macintosh a Linux.