Tenzor intenzity elektromagnetického pole definovaný jako:
![{\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77fbf0c39a13f9706357f83b041774749598ded1)
kde
![{\displaystyle {A_{\mu }}=\eta _{\mu \nu }{A^{\nu }}=(A^{0}={{\varphi } \over {c}},{\vec {A}}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b7f54838d3eeeb803ec9b79bb4c202d82dd7503)
je metrický tenzor, který v STR značíme
![{\displaystyle \eta _{\mu \nu }=\eta ^{\mu \nu }=\,{\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/746525e2b7ad981570c400a588ad5886063a584e)
vektorový a
skalární potenciál na tzv. čtyřpotenciál definovaný skrz
![{\displaystyle {\vec {E}}=-{\frac {1}{c}}{\frac {\partial {\vec {A}}}{\partial t}}-\nabla \varphi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e7a767107d66b6f15a24095bbd0e9cae4dd9e0)
![{\displaystyle {\vec {B}}=\nabla \times {\vec {A}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e7407e07bdb01a1048a72518d136819c32434f5)
Tenzor intenzity elektromagnetického pole tedy je:
![{\displaystyle F_{\mu \nu }={\begin{pmatrix}0&-E_{x}/c&-E_{y}/c&-E_{z}/c\\E_{x}/c&0&B_{z}&-B_{y}\\E_{y}/c&-B_{z}&0&B_{x}\\E_{z}/c&B_{y}&-B_{x}&0\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8b312df247fb78e3a77facbf067cf308e4cb0ea)
nebo:
![{\displaystyle F^{\mu \nu }={\begin{pmatrix}0&E_{x}/c&E_{y}/c&E_{z}/c\\-E_{x}/c&0&B_{z}&-B_{y}\\-E_{y}/c&-B_{z}&0&B_{x}\\-E_{z}/c&B_{y}&-B_{x}&0\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e94864b67ec12bc66f86b486e9583bd3970b69a)
Maxwellovy rovnice nyní jsou
![{\displaystyle -{\partial _{\nu }F^{\nu \mu }}=\,J^{\mu },}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52611a5e8d6bea7a13b8384a13582421fbf152f1) |
(První série Maxwellových rovnic.)
|
![{\displaystyle F_{[\mu \nu ,\kappa ]}=F_{\mu \nu ,\kappa }+F_{\nu \kappa ,\mu }+F_{\kappa \mu ,\nu }=\,0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cde9007fad104563861ee19c60366defdb5a7aa0) |
(Druhá série Maxwellových rovnic.)
|
Lokální kalibrační transformaci
![{\displaystyle A_{\mu }\rightarrow A'_{\mu }=A_{\mu }+\partial _{\mu }\phi (\mathbf {x} ,t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0f9cd7cabb1bd61149639994009eabdf86e130fb)
je Kalibrační invariance
![{\displaystyle F_{\mu \nu }\rightarrow F'_{\mu \nu }=\partial _{\mu }A'_{\nu }-\partial _{\nu }A'_{\mu }=F_{\mu \nu }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/234f3d137d588d92d0caae1d5ceacc6736e01ba0)