Mezi oblasti její aplikace patří například analýza tekutin (turbulentní toky, atmosférické děje), analýza vibrací (detekce závad strojů), nedestruktivní testování (detekce prasklin), lékařství (detekce QRS komplexů v signálech EKG, evokovaných potenciálů v EEG, analýza korelací v sekvencích DNA), ekonomika (analýza burzovních indexů), geofyzika (analýza seismických signálů), astronomie, studium plazmatu a mnohé další.[1]
Ze vztahů je patrné, že vlnkovou transformaci je možno chápat jako skalární součiny s bázemi , jako integrální transformaci s jádrem nebo jako konvoluce s funkcemi . Je také možný výpočet ve frekvenční oblasti.
Pro účely srovnání se spektrogramem je možné škálogram převést ze závislosti na měřítku na závislost na frekvenci. K tomu lze využít např. střední frekvenci vlnky .
Škálogramy se často vykreslují s logaritmickou osou měřítka .
označuje se jádro transformace jako vlnkové rámce (wavelet frames, WF). Transformace tedy již není spojitá ale diskrétní. Jinými slovy je diskretizována polorovina . Transformace je stále vysoce redundantní.
Obecně vzato, vlnky jsou matematicky konstruovány, aby měly vhodné vlastnosti například pro zpracování signálů. Vlnková transformace je v podstatě konvoluce určité vlnky (nebo jejich skupiny) s analyzovaným signálem.
Představme si například vlnku, která má frekvenci tónu střední C a krátké trvání odpovídající osminové notě. Provedeme-li v pravidelných intervalech konvoluci takovéto vlnky se signálem – nahrávkou písně – pak nám výsledky této konvoluce napoví, kdy byla nota „osminové střední C“ v nahrávce použita.
Matematicky vzato, k vysoké korelaci vlnky se signálem (vysokému korelačnímu koeficientu) dojde v těch místech (intervalech), kde signál obsahuje informaci o podobné frekvenci, tedy tam, kde je námi zvolené vlnce nejpodobnější. Tento koncept je jádrem mnoha aplikací vlnkové transformace.
↑ADDISON, Paul S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. New York: Taylor & Francis, 2002. xiii, 353 s. Dostupné online. ISBN9780750306928. (anglicky)
↑KOZUMPLÍK, Jiří. Vlnkové transformace a jejich využití pro filtraci signálů EKG. Brno: VUTIUM, 2005. 81 s. Dostupné online. ISBN80-214-3045-1. Kapitola 1.1 Vlnkové transformace spojitého signálu, s. 5, 6. ISSN 1213-418X.[nedostupný zdroj]
MALLAT, Stéphane. A Wavelet Tour of Signal Processing: The Sparse Way. With contributions from Gabriel Peyré. 3. vyd. [s.l.]: Academic Press, 1998. xx, 805 s. Dostupné online. ISBN9780123743701. (anglicky)
ADDISON, Paul S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. New York: Taylor & Francis, 2002. xiii, 353 s. Dostupné online. ISBN9780750306928. (anglicky)
DAUBECHIES, Ingrid. Ten Lectures on Wavelets. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1992. xix, 357 s. (CBMS-NSF regional conference series in applied mathematics; sv. 61). Dostupné online. ISBN0898712742. (anglicky)