Mewn mathemateg, mae eil-ffwythiannau ac od-ffwythiannau yn ffwythiannau sy'n bodloni perthnasoedd cymesuredd penodol. Maent yn bwysig mewn nifer o feysydd o ddadansoddiad mathemategol, yn enwedig theori cyfresi pŵer a chyfresi Fourier. Fe'u henwir am baredd pwerau'r ffwythiannau pŵer sy'n bodloni pob amod: mae'r ffwythiant yn eil-ffwythiant os yw n yn eilrif, ac mae'n od-ffwythiant os yw n yn odrif.
Yn gyffredinol, mae ystyriwn ffwythiannau real yn unig wrth ystyried eil-ffwythiannau ac od-ffwythiannau, hynny yw ffwythiannau gwerth real a newidyn real. Fodd bynnag, gall y cysyniadau hyn gael eu diffinio'n fwy cyffredinol ar gyfer ffwythiannau lle mae gan eu parth a'u hamrediad rhyw syniad o wrthdro adiol. Mae hyn yn cynnwys grwpiau Abel, pob modrwy, pob maes, a phob gofod fector. Felly, er enghraifft, gallai ffwythiant real fod yn od-ffwythiant neu'n eil-ffwythiant (neu'r naill na'r llall), a hefyd gallai ffwythiant gwerth cymhlyg gyda newidyn fector, ac ati.
Mae'r enghreifftiau a roddir yn ffwythiannau real, er mwyn dangos cymesuredd eu graffiau.
Gadewch i f fod yn ffwythiant gwerth real newidyn real. Yna mae f yn eil-ffwythiant os yw'r hafaliad canlynol wedi'i bodloni ar gyfer pob x fel bod x ac -x ym mharth f:[1]
neu'n gywerth, os yw'r hafaliad canlynol wedi'i bodloni pob x o'r fath:
Yn geometryddol, mae graff eil-ffwythiant yn gymesur o gwmpas yr echelin-y, sy'n golygu bod ei graff parhau heb ei newid ar ôl adlewyrchiad yn yr echelin-y.
Unwaith eto, gadewch i f fod yn ffwythiant gwerth real newidyn real. Yna mae f yn rhyfedd os yw'r hafaliad canlynol yn dal pob x fel bod x a - x ym mharth f:[1]
neu'n gywerth, os yw'r hafaliad canlynol wedi'i bodloni pob x o'r fath:
Yn geometryddol, mae gan graff od-ffwythiant gymesuredd cylchdro mewn perthynas â'r tarddbwynt, sy'n golygu bod ei graff yn aros yr un fath ar ôl cylchdroi 180 gradd o gwmpas y tarddbwynt.
Mae'r gwahaniaeth rhwng dau od-ffwythiant yn od-ffwythiant.
Mae'r gwahaniaeth rhwng dau eil-ffwythiant yn eil-ffwythiant.
Mae swm eil-ffwythiant ac od-ffwythiant ddim yn eil-ffwythiant nac yn od-ffwythiant, oni bai bod un o'r ffwythiannau yn hafal i sero dros y parth penodol.