Das 65537-Eck ist eine geometrische Figur aus der Gruppe der Vielecke (Polygone). Es ist definiert durch 65.537 Punkte, die durch ebenso viele Kanten zu einer geschlossenen Figur verbunden sind.
Dieser Artikel befasst sich ausschließlich mit dem regelmäßigen 65537-Eck, bei dem alle Seiten gleich lang sind, und dessen Eckpunkte auf einem gemeinsamen Umkreis liegen. In einer grafischen Darstellung ist das 65537-Eck von einem Kreis visuell nur bei großen Radien zu unterscheiden (siehe Abbildung 1).
Das Besondere am 65537-Eck ist die Tatsache, dass es unter Beschränkung auf die Euklidischen Werkzeuge Zirkel und Lineal theoretisch konstruiert werden kann. In der Praxis ist die Konstruktion jedoch – wegen der dabei entstehenden Dichte der Linien und Eckpunkte – nicht realisierbar. Die Zahl 65.537 ist die größte bekannte Fermatsche Primzahl:
Carl Friedrich Gauß bewies im Jahre 1796, dass ein regelmäßiges Vieleck genau dann mit Zirkel und Lineal konstruiert werden kann, wenn die Zahl seiner Ecken abgesehen von einer beliebigen Zweierpotenz gleich einem Produkt verschiedener Fermatscher Primzahlen ist.
Im Jahr 1894 fand Johann Gustav Hermes nach mehr als zehnjähriger Anstrengung eine Konstruktionsvorschrift für das regelmäßige 65537-Eck und beschrieb diese in einem Manuskript von mehr als 200 Seiten, welches sich heute in einem speziell dafür angefertigten Koffer in der Mathematischen Bibliothek der Georg-August-Universität Göttingen befindet.[1][2]
Der Konstruktion liegt eine Auflösung der Kreisteilungsgleichung mittels geschachtelter Quadratwurzeln zugrunde. Diese Auflösung geschieht analog zum für das Siebzehneck beschriebenen Weg, wobei wie dort als Primitivwurzel wieder gewählt werden kann.
Der Zentriwinkel hat den Wert .
Der Innenwinkel hat den Wert .
Die Seitenlänge hat im Einheitskreis den Wert
Zur Veranschaulichung der Proportionen dieser praktisch nicht darstellbaren Figur mögen folgende Überlegungen dienen: