Die archimedischen Körper sind eine Klasse von regelmäßigen geometrischen Körpern. Sie sind konvexe Polyeder (Vielflächner) mit folgenden Eigenschaften:
Je nach Zählweise gibt es 13 oder 15 solcher Körper. Sie sind nach dem griechischen Mathematiker Archimedes benannt, der sie alle vermutlich bereits im dritten Jahrhundert vor Christus entdeckte. Die Schrift des Archimedes ist nicht erhalten, es ist nur eine Zusammenfassung des alexandrinischen Mathematikers Pappos (4. Jahrhundert nach Christus) überliefert.[1]
Die exakte Definition der Uniformität der Ecken bereitet einige Mühe und ist nicht immer einheitlich.[2]
Zunächst betrachtet man alle konvexen Polyeder, deren Seitenflächen regelmäßige Polygone sind und die die globale Uniformität der Ecken erfüllen:
Das bedeutet anschaulich:
Es gibt mehrere einfache Klassen von konvexen Polyedern, die alle diese Eigenschaften erfüllen:
Die archimedischen Körper sind nun definiert als alle konvexen Polyeder mit regelmäßigen Seitenflächen, die die globale Uniformität der Ecken erfüllen und nicht in eine dieser drei genannten Klassen fallen.
Die meisten archimedischen Körper lassen sich auf anschauliche Weise aus den platonischen Körpern ableiten. Die einfachste Operation ist das Abstumpfen, die Rektifikation, das Doppelabstumpfen und die Doppelrektifikation. Dabei handelt es sich um verschieden starke Varianten des Abstumpfens. Die Abstumpfungsebenen (Schnittebenen) werden dabei konzentrisch so weit in Richtung Mittelpunkt des vorliegenden platonischen Körpers geschoben, bis sich Seitenflächen des platonischen Körpers oder diese Schnittebenen in einem Punkt treffen oder Schnittkanten dieser Seitenflächen oder Schnittebenen dieselbe Länge haben wie die verbleibenden Restkanten des ursprünglichen platonischen Körpers. Etwas anspruchsvoller sind die Kantellation, das Abschrägen und die Kantitrunkation. Die folgende Tabelle gibt eine Übersicht über die entstehenden Körper:
Symmetriegruppe | Tetraedergruppe | Oktaedergruppe | Ikosaedergruppe | ||
---|---|---|---|---|---|
Operation | Tetraeder | Hexaeder | Oktaeder | Dodekaeder | Ikosaeder |
Abstumpfen | Tetraederstumpf | Hexaederstumpf | Oktaederstumpf | Dodekaederstumpf | Ikosaederstumpf |
Rektifikation | Oktaeder | Kuboktaeder | Ikosidodekaeder | ||
Doppelabstumpfen | Tetraederstumpf | Oktaederstumpf | Hexaederstumpf | Ikosaederstumpf | Dodekaederstumpf |
Doppelrektifikation | Tetraeder | Oktaeder | Hexaeder | Ikosaeder | Dodekaeder |
Kantellation | |||||
Abschrägen | |||||
Kantitrunkation | Oktaederstumpf | Großes Rhombenkuboktaeder | Großes Rhombenikosidodekaeder |
Im Fall des Tetraeders sind nicht alle entstehenden Polyeder archimedische Körper. Durch Doppelabstumpfen entsteht das Oktaeder und durch Abschrägen entsteht das Ikosaeder.
Name | Bilder | Flächen | Kanten | Ecken | Flächenfolge an den Ecken |
Symmetrie- gruppe |
Dualer Körper | ||
---|---|---|---|---|---|---|---|---|---|
Tetraederstumpf | 8 | 4 Dreiecke 4 Sechsecke |
18 | 12 | 3, 6, 6 |
Td | Triakistetraeder | ||
Kuboktaeder | 14 | 8 Dreiecke 6 Quadrate |
24 | 12 | 3, 4, 3, 4 |
Oh | Rhombendodekaeder | ||
Hexaederstumpf | 14 | 8 Dreiecke 6 Achtecke |
36 | 24 | 3, 8, 8 |
Oh | Triakisoktaeder | ||
Oktaederstumpf | 14 | 6 Quadrate 8 Sechsecke |
36 | 24 | 4, 6, 6 |
Oh | Tetrakishexaeder | ||
Rhombenkuboktaeder | 26 | 8 Dreiecke 18 Quadrate |
48 | 24 | 3, 4, 4, 4 |
Oh | Deltoidalikositetraeder | ||
Großes Rhombenkuboktaeder oder Kuboktaederstumpf |
26 | 12 Quadrate 8 Sechsecke 6 Achtecke |
72 | 48 | 4, 6, 8 |
Oh | Hexakisoktaeder | ||
Abgeschrägtes Hexaeder oder Cubus simus |
38 | 32 Dreiecke 6 Quadrate |
60 | 24 | 3, 3, 3, 3, 4 |
O | Pentagonikositetraeder | ||
Ikosidodekaeder | 32 | 20 Dreiecke 12 Fünfecke |
60 | 30 | 3, 5, 3, 5 |
Ih | Rhombentriakontaeder | ||
Dodekaederstumpf | 32 | 20 Dreiecke 12 Zehnecke |
90 | 60 | 3, 10, 10 |
Ih | Triakisikosaeder | ||
Ikosaederstumpf oder Fußballkörper |
32 | 12 Fünfecke 20 Sechsecke |
90 | 60 | 5, 6, 6 |
Ih | Pentakisdodekaeder | ||
Rhombenikosidodekaeder | 62 | 20 Dreiecke 30 Quadrate 12 Fünfecke |
120 | 60 | 3, 4, 5, 4 |
Ih | Deltoidalhexakontaeder | ||
Großes Rhombenikosidodekaeder oder Ikosidodekaederstumpf |
62 | 30 Quadrate 20 Sechsecke 12 Zehnecke |
180 | 120 | 4, 6, 10 |
Ih | Hexakisikosaeder | ||
Abgeschrägtes Dodekaeder oder Dodecaedron simum |
92 | 80 Dreiecke 12 Fünfecke |
150 | 60 | 3, 3, 3, 3, 5 |
I | Pentagonhexakontaeder |
Der dreidimensionale euklidische Raum kann lückenlos mit platonischen Körpern oder archimedischen Körpern gleicher Kantenlänge ausgefüllt werden. Solche dreidimensionalen Parkettierungen werden Raumfüllung genannt. Die folgenden Raumfüllungen enthalten archimedischen Körper:
Der dreidimensionale euklidische Raum kann mit Oktaederstümpfen lückenlos parkettiert werden kann. Das ist der einzige archimedischen Körper, mit dem das möglich ist.
Lange Zeit benutzte man für die Definition der archimedischen Körper nicht die globale, sondern die anschaulichere lokale Uniformität der Ecken. Erst im Jahr 1930 stellte der britische Mathematiker J. C. P. Miller fest, dass ein konvexes Polyeder mit regelmäßigen Seitenflächen existiert, welches die lokale Uniformität der Ecken erfüllt, aber bisher nicht als archimedischer Körper erkannt worden war. Dieses Polyeder entsteht, wenn man beim Rhombenkuboktaeder eine Kappe um 45 Grad verdreht. Es wird als Pseudo-Rhombenkuboktaeder, als Miller’s solid oder als Johnson-Körper bezeichnet.
In jeder Ecke dieses Körpers stoßen wie beim Rhombenkuboktaeder drei Quadrate und ein Dreieck zusammen, die lokale Uniformität der Ecken ist also gegeben. Im Gegensatz zu den klassischen archimedischen Körpern können trotzdem zwei verschiedene Typen von Ecken unterschieden werden. Dazu ist es aber notwendig, nicht nur die direkten Nachbarflächen der Ecke zu betrachten, sondern zur Unterscheidung auch die weiter entfernten Nachbarflächen der Ecke mit einzubeziehen.
Gelegentlich klassifiziert man das Pseudo-Rhombenkuboktaeder als 14. archimedischen Körper. In der Regel herrscht aber die Meinung vor, dass es aufgrund der unterschiedlichen Typen von Ecken nicht als archimedischer Körper angesehen werden sollte. Die Forderung der starken Uniformität der Ecken sorgt dann dafür, dass das Pseudo-Rhombenkuboktaeder aus der Definition ausgeschlossen wird.
Man kann spekulieren, dass möglicherweise bereits Kepler das Pseudo-Rhombenkuboktaeder kannte, denn einmal spricht er von vierzehn archimedischen Körpern.[3]