Die SI-Einheit des Diffusionskoeffizienten ist daher . Zur Angabe des Diffusionskoeffizienten gehört immer die Angabe, welcher Stoff in welchem Stoff diffundiert, sowie als wichtigste Einflussgröße die Temperatur.
Diffusionskoeffizienten in Gasen[1][2] sind stark abhängig von Temperatur und Druck. In erster Näherung gilt, dass eine Verdopplung des Druckes zur Halbierung des Diffusionskoeffizienten führt.
Der Diffusionskoeffizient folgt gemäß der Chapman-Enskog-Theorie folgender Gleichung für zwei gasförmige Stoffe (Indizes 1 und 2):[3]
Temperaturabhängigkeit des Diffusionskoeffizienten von 100-nm-Kügelchen (R0=50nm) in Wasser
Diffusionskoeffizienten in Flüssigkeiten[1] betragen in der Regel etwa ein Zehntausendstel von Diffusionskoeffizienten in Gasen. Sie werden beschrieben durch die Stokes-Einstein-Gleichung:[5]
Da die Viskosität des Lösungsmittels eine Funktion der Temperatur ist, ist die Abhängigkeit des Diffusionskoeffizienten von der Temperatur nichtlinear.
Diffusionskoeffizienten in Feststoffen[1] sind in der Regel mehrere tausend Mal kleiner als Diffusionskoeffizienten in Flüssigkeiten.
Für die Diffusion in Festkörpern sind Sprünge zwischen verschiedenen Gitterplätzen erforderlich. Dabei müssen die Teilchen eine Energiebarriere E überwinden, was bei höherer Temperatur leichter möglich ist als bei niedrigerer. Dies wird beschrieben durch den Zusammenhang:[6]
Der effektive Diffusionskoeffizient[7] beschreibt Diffusion durch den Porenraum poröser Medien. Da er nicht einzelne Poren, sondern den gesamten Porenraum betrachtet, ist er eine makroskopische Größe:
mit
εt – Porosität, die für den Transport zur Verfügung steht; sie entspricht der Gesamtporosität abzüglich Poren, die aufgrund ihrer Größe für die diffundierenden Teilchen nicht zugänglich sind, und abzüglich Sackgassen- und blinder Poren (Poren ohne Verbindung zum restlichen Porensystem)
δ – Konstriktivität; sie beschreibt die Verlangsamung der Diffusion durch eine Erhöhung der Viskosität in engen Poren als Folge der größeren durchschnittlichen Nähe zur Porenwand und ist eine Funktion von Porendurchmesser und Größe der diffundierenden Teilchen.
Bei nichtlinearer Sorptionsisotherme ist der scheinbare Diffusionskoeffizient stets eine Funktion der Konzentration, was die Berechnung der Diffusion erheblich erschwert.
↑ abcE. L. Cussler: Diffusion – Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge/New York, 1997, ISBN 0-521-56477-8.
↑T. R. Marrero, E. A. Mason: Gaseous Diffusion Coefficients. In: Journal of Physical and Chemical Reference Data. Band1, Nr.1, 1. Januar 1972, ISSN0047-2689, S.3–118, doi:10.1063/1.3253094 (nist.gov [PDF; abgerufen am 8. Oktober 2017]).
↑ abcJ. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, New York, 1954, ISBN 0-471-40065-3
↑Franz Durst: Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden. Springer, Berlin, 2006, ISBN 3-540-31323-0.