Kristallstruktur | |||||||
---|---|---|---|---|---|---|---|
_ Sr2+ _ Ru4+ _ O2− | |||||||
Allgemeines | |||||||
Name | Distrontiumruthenat | ||||||
Andere Namen |
Strontiumruthenat (mehrdeutig) | ||||||
Verhältnisformel | Sr2RuO4 | ||||||
Kurzbeschreibung |
geschichteter Perowskit[1] | ||||||
Externe Identifikatoren/Datenbanken | |||||||
| |||||||
Eigenschaften | |||||||
Molare Masse | 340,31 g·mol−1 | ||||||
Aggregatzustand |
fest | ||||||
Dichte |
5,92 g·cm−3[2] | ||||||
Schmelzpunkt |
~2200 °C[3] | ||||||
Sicherheitshinweise | |||||||
| |||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
Distrontiumruthenat (SRO) ist eine keramische Verbindung des Strontiums mit Ruthenium und Sauerstoff mit der Formel Sr2RuO4. Es ist der erste entdeckte Perowskit-Supraleiter ohne Kupfer.[1][5]
Distrontiumruthenat kann durch Reaktion von Strontiumcarbonat mit Ruthenium(IV)-oxid in Sauerstoff bei über 900 °C gewonnen werden.[6]
Hochwertige SRO-Kristalle werden im Zonenschmelzverfahren in einer kontrollierten Atmosphäre im Rutheniumstrom hergestellt. Die Perowskitstruktur wird durch Röntgen-Pulverdiffraktrometrie nachgewiesen. SRO verhält sich unterhalb von 25 K wie eine konventionelle Fermiflüssigkeit.[1]
Distrontiumruthenat besitzt eine tetragonale Kristallstruktur mit der Raumgruppe I4/mmm (Raumgruppen-Nr. 139) .[6]
SRO ist strukturell den Hochtemperatur-Supraleitern der Kuprate sehr ähnlich,[7] insbesondere dem Lanthan-dotierten Hochtemperatur-Supraleiter(La,Sr)2CuO4. Die Übergangstemperatur in die supraleitende Phase liegt jedoch bei Tc = 1,48 K und damit wesentlich niedriger als bei den Kupraten.[1] Die Übergangstemperatur Tc steigt unter uniaxialem Druck an.[8]
Die Supraleitung in SRO konnte 1994 erstmals durch Yoshitero Maeno et al. nachgewiesen werden, als sie nach Hochtemperatur-Supraleitern mit kupratähnlicher Struktur suchten. Im Unterschied zu Kupraten zeigt SRO auch ohne Dotierung Supraleitung.[7] Die makroskopische Wellenfunktion als Ordnungsparameter des supraleitenden Zustands zeigt in SRO Anzeichen einer gebrochenen Zeitumkehrsymmetrie,[9] so dass das Material als unkonventioneller Supraleiter klassifiziert wird. Sr2RuO4 wird als nahezu zweidimensionales System angesehen, dessen Supraleitung vorwiegend in der Ru-O-Ebene stattfindet. Aufgrund dessen bestehen die Fermioberflächen der drei Leitungsbänder aus nahezu zweidimensionalen Ebenen mit geringer Dispersion entlang der c-Achse des Kristalls und weisen magnetische Eigenschaften auf.[10]
Besonders ungewöhnlich ist die Koexistenz von Supraleitung und ferromagnetischen Eigenschaften in SRO, da sich diese Phänomene nach herkömmlicher Auffassung gegenseitig ausschließen, und die sonst nur in Heterostrukturen hergestellt werden kann.[11] R. Fittipaldi et al. konnten 2021 mittels Myon-Spinspektroskopie nachweisen, dass der Magnetismus von SRO auf kollektive Wirbelströme an der Oberfläche des Materials zurückzuführen ist, was das Material für Anwendungen der Spintronik interessant macht.