Eine Fakultätsprimzahl ist eine Primzahl , die um eins größer oder kleiner als eine Fakultät ist, also eine Primzahl der Form
- .
Die ersten 10 Fakultätsprimzahlen sind
- 2 (0! + 1 oder 1! + 1), 3 (2! + 1), 5 (3! − 1), 7 (3! + 1), 23 (4! − 1), 719 (6! − 1), 5039 (7! − 1), 39916801 (11! + 1), 479001599 (12! − 1), 87178291199 (14! − 1), … (siehe Folge A088054 in OEIS).
n! − 1 ist eine Primzahl für
- n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003, … (Folge A002982 in OEIS, resultierend in 27 Fakultätsprimzahlen).
n! + 1 ist eine Primzahl für
- n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465 … (Folge A002981 in OEIS, resultierend in 22 Fakultätsprimzahlen).
Bis jetzt (Stand Januar 2022) sind keine anderen als die aufgeführten 49 Fakultätsprimzahlen bekannt.
formelbasiert
|
Carol ((2n − 1)2 − 2) |
Doppelte Mersenne (22p − 1 − 1) |
Fakultät (n! ± 1) |
Fermat (22n + 1) |
Kubisch (x3 − y3)/(x − y) |
Kynea ((2n + 1)2 − 2) |
Leyland (xy + yx) |
Mersenne (2p − 1) |
Mills (A3n) |
Pierpont (2u⋅3v + 1) |
Primorial (pn# ± 1) |
Proth (k⋅2n + 1) |
Pythagoreisch (4n + 1) |
Quartisch (x4 + y4) |
Thabit (3⋅2n − 1) |
Wagstaff ((2p + 1)/3) |
Williams ((b-1)⋅bn − 1) |
Woodall (n⋅2n − 1)
|
Primzahlfolgen
|
Bell |
Fibonacci |
Lucas |
Motzkin |
Pell |
Perrin
|
eigenschaftsbasiert
|
Elitär |
Fortunate |
Gut |
Glücklich |
Higgs |
Hochkototient |
Isoliert |
Pillai |
Ramanujan |
Regulär |
Stark |
Stern |
Wall–Sun–Sun |
Wieferich |
Wilson
|
basisabhängig
|
Belphegor |
Champernowne |
Dihedral |
Einzigartig |
Fröhlich |
Keith |
Lange |
Minimal |
Mirp |
Permutierbar |
Primeval |
Palindrom |
Repunit-Primzahl ((10n − 1)/9) |
Schwach |
Smarandache–Wellin |
Strobogrammatisch |
Tetradisch |
Trunkierbar |
Zirkular
|
basierend auf Tupel
|
Ausbalanciert (p − n, p, p + n) |
Chen |
Cousin (p, p + 4) |
Cunningham (p, 2p ± 1, …) |
Drilling (p, p + 2 oder p + 4, p + 6) |
Konstellation |
Sexy (p, p + 6) |
Sichere (p, (p − 1)/2) |
Sophie Germain (p, 2p + 1) |
Vierling (p, p + 2, p + 6, p + 8) |
Zwilling (p, p + 2) |
Zwillings-Bi-Kette (n ± 1, 2n ± 1, …)
|
nach Größe
|
Titanisch (1.000+ Stellen) |
Gigantisch (10.000+ Stellen) |
Mega (1.000.000+ Stellen) |
Beva (1.000.000.000+ Stellen)
|