FlexRay ist ein serielles, deterministisches und fehlertolerantes Feldbussystem für den Einsatz im Automobil, vergleichbar mit TTP. Das FlexRay-Konsortium wurde 2000 von den Unternehmen BMW, Daimler AG, Motorola und Philips gegründet. Von 2001 bis 2004 traten als Core-Partner die Unternehmen Bosch, General Motors und Volkswagen bei. 2004 übernahm Freescale Semiconductor die Rechte und Pflichten als Core-Mitglied im Konsortium von Motorola. 2006 übernahm NXP Semiconductors die Rechte und Pflichten als Core-Mitglied im Konsortium von Philips. 2010 löste sich das FlexRay-Konsortium auf. Der FlexRay Standard wurde danach in einen ISO-Standard überführt (ISO 17458-1 bis 17458-5).
FlexRay sollte die erhöhten Anforderungen zukünftiger Vernetzung im Fahrzeug erfüllen, die durch den CAN-Bus nicht befriedigt werden können, insbesondere eine höhere Datenübertragungsrate, Echtzeit-Fähigkeit und Ausfallsicherheit (für X-by-Wire-Systeme). Im aktuellen Fokus steht jedoch vorrangig die höhere Datenrate, welche durch den kontinuierlichen Anstieg von Fahrerassistenzsystemen im Bereich Antrieb und Fahrwerk in Premiumfahrzeugen heute notwendig ist. FlexRay definiert die Layer 1 (physische Schicht) und 2 (Datensicherungsschicht) im ISO/OSI-Referenzmodell. Der Serieneinsatz im Automobil erfolgte erstmals 2006 im BMW X5. Der FlexRay-Cluster in diesem Fahrzeug basiert auf der Protokollversion v2.0, der Physical Layer Spezifikation v2.1 Revision A.
Um auch die Anforderungen aktiver Sicherheitssysteme zu erfüllen, wurde FlexRay vor allem in Bezug auf zeitlichen Determinismus und Fehlertoleranz weiter entwickelt. Ein Bus-Guardian sollte eine zentrale bzw. dezentrale Überwachung der Buszugriffe auf Basis des statisch festgelegten TDMA-Schemas ermöglichen, kommt aber praktisch nicht zum Einsatz. FlexRay bietet zusätzlich zu ByteFlight eine Nachrichtenkommunikation mit einem festgelegten TDMA-Schema. Dabei setzt FlexRay ähnliche Mechanismen ein, wie das an der Technischen Universität Wien entwickelte Time-Triggered Protocol TTP. Zusätzlich zum TDMA-Schema bietet das von ByteFlight übernommene Minislotting-Protokoll einen kollisionsfreien, priorisierten, dynamischen Kommunikationskanal.
Um einen Knoten, zum Beispiel ein Steuergerät, an einem FlexRay-Bus zu betreiben, braucht man zwei Komponenten: den Bus Transceiver und den Communication Controller. Der Bus Transceiver stellt die direkte Verbindung zur Datenleitung her: Einerseits schreibt er die logische Information, die versendet werden soll, in Form von Spannungspulsen auf den Bus; andererseits liest er die Signale aus, die von anderen Teilnehmern auf dem Bus gesendet werden. Diese Ebene wird als physische Bitübertragungsschicht oder Physical Layer bezeichnet. Außerdem umfasst FlexRay noch das Busprotokoll. Das Busprotokoll regelt, wie ein Netzwerk startet, wie eine global Clock etabliert wird und welche Steuergeräte zu welchem Zeitpunkt senden dürfen. Der Communication Controller setzt das Busprotokoll in jedem Steuergerät um, beispielsweise verpackt er die zu übertragenden Informationen in ein Datenpaket und übergibt dieses Datenpaket zum richtigen Zeitpunkt zur Übertragung an den Bus Transceiver.
FlexRay unterstützt:
Die Kommunikation auf dem Bus läuft in Zyklen ab. Jeder dieser Zyklen ist in verschiedene Segmente unterteilt:
Die Synchronisation bewirkt, dass alle Steuergeräte am Bus nach dem gleichen Takt Nachrichten senden und nicht durch zeitliche Verschiebungen im Minislot (Zeitfenster) eines fremden Steuergerätes senden. Der Zeittakt wird von den Steuergeräten nach bestimmten Regeln beim Aufwachen ausgehandelt. Es ist daher kein Master notwendig, der den Takt vorgibt und bei seinem Ausfall den Bus lahmlegen könnte.
Der FlexRay-Rahmen (englisch Frame) ist wie in nebenstehender Abbildung dargestellt aufgebaut.
FlexRay nutzt ähnlich wie der CAN-Bus verdrillte Zweidrahtleitungen, aus Redundanzgründen werden zwei solcher Leitungen verwendet. Um Reflexionen an den Leitungsenden zu verhindern, wird jede Leitung mit ihrem Leitungswellenwiderstand im Bereich von 80 Ω bis 110 Ω abgeschlossen. Die maximale Leitungslänge hängt von der Datenrate und der Anzahl, Länge und Position der Stichleitungen ab. BMW und andere OEMs setzen spezielle TP-Leitungen mit PE-Isolation ein, da PE als Isolierwerkstoff gegenüber PVC erhebliche Vorteile bei der temperaturbedingten Toleranz hat, folglich die Anforderungen an die Impedanz erfüllt werden können. Für Laboraufbauten eignen sich Ethernet-Kabel, sowohl Standardvarianten (CAT5 etc.) wie auch Profinet-Kabel, letztere gibt es in robusten Ausführungen und eignen sich auch für Verkabelungen im Fahrzeug.
Die Signale werden durch Spannungspegel von 1,5 V und 3,5 V übertragen, je nach Lage dieser Spannungspegel auf den Leitungen wird eine 0 oder 1 übertragen. Haben beide Leitungen den Pegel 2,5 V, ist der Bus im Leerlauf (Idle). Zur Energieeinsparung kann auch der Pegel 0 V für beide Leitungen verwendet werden.