Gammablitze, Gammastrahlenblitze, Gammastrahlenausbrüche oder auch Gammastrahlenexplosionen (englisch gamma-ray bursts, oft abgekürzt GRB) sind Energieausbrüche sehr hoher Leistung im Universum, von denen große Mengen elektromagnetischer Strahlung ausgehen.
Die Entstehung der Gammablitze ist noch nicht vollständig geklärt. Man beobachtete einen Gammablitz erstmals am 2. Juli 1967 mit den US-amerikanischen Vela-Überwachungssatelliten, die eigentlich zur Entdeckung oberirdischer Atombombentests dienten. Dass die Strahlen aus den Tiefen des Weltraums kamen, wurde erst 1973 durch Wissenschaftler im Los Alamos National Laboratory in New Mexico mit den Daten der Satelliten sicher festgestellt.
Die Bezeichnung „Gammablitz“ hat sich wahrscheinlich eingebürgert, weil die Vela-Satelliten zur Detektion der Gammastrahlung von Kernwaffenexplosionen gedacht und ausgerüstet waren. Auch wird elektromagnetische Strahlung mit Photonenenergien im keV-Bereich und höher oft allgemein als Gammastrahlung bezeichnet, wenn ihre Quelle und Entstehung nicht bekannt ist. Um Gammastrahlung im engeren, kernphysikalischen Sinn handelt es sich bei den Gammablitzen nicht.
Gammablitze setzen in zehn Sekunden mehr Energie frei als unsere Sonne während ihrer gesamten Lebensdauer (mehrere Milliarden Jahre). Für die Dauer seines Leuchtens ist ein Gammablitz heller als alle übrigen Gammastrahlenquellen am Himmel. Gammablitze haben zudem ein Nachglühen im optischen sowie im Röntgenspektrum, das in Zeiträumen der Größenordnung von Tagen und Wochen langsam verblasst.
Den bislang hellsten beobachteten Gammablitz registrierte der NASA-Forschungssatellit Swift am 19. März 2008. Der Ausbruch kam von einem Objekt, das 7,5 Milliarden Lichtjahre von der Erde entfernt war. Er war 2,5 Millionen Mal heller als die leuchtstärkste bisher beobachtete Supernova und erstmals konnte das optische Nachglühen eines GRB (englisch gamma-ray burst) mit dem bloßen Auge gesehen werden. Diese Explosion wurde unter der Nummer GRB 080319B katalogisiert.[1]
Die Strahlung von Gammablitzen kann die Erdatmosphäre nicht unverändert durchdringen. Daher können Gammablitze
Wegen ihrer kurzen Dauer und hohen Leuchtkraft und wegen des geringen räumlichen Auflösungsvermögens der Satellitenteleskope konnte man die Gammablitze lange Zeit weder bekannten (sichtbaren) Quellen zuordnen noch glaubhafte Vermutungen zu ihren Ursachen anstellen. Zuerst wurden die Quellen der Blitze innerhalb unserer Milchstraße vermutet, weil Ereignisse derartiger Helligkeit bei weiterer Entfernung physikalisch nicht erklärbar schienen. Aus ihrer gleichförmigen Verteilung über den gesamten Himmel konnte man jedoch schließen, dass es sich um extragalaktische Ereignisse handelt. Andernfalls müssten sie sich in der Ebene der Milchstraße häufen, in der sich die meisten Sterne der Milchstraße befinden, oder, falls sie zum Halo der Milchstraße gehörten, in Richtung des galaktischen Zentrums.
Ein wesentlicher Fortschritt gelang durch sehr rasche Lokalisierung der Gammablitze, so dass andere Teleskope noch während der Dauer des Blitzes automatisch auf dessen Himmelsposition gerichtet werden können. Mit Hilfe des Röntgensatelliten BeppoSAX konnte 1997 erstmals das Nachglühen von Gammablitzen im Röntgenbereich beobachtet werden. Auf Grund der wesentlich exakteren Positionsbestimmung in der Röntgenastronomie konnte man gezielte Nachbeobachtungen auch im UV- und sichtbaren Licht machen und sie bekannten Quellen zuordnen. Man fand an den Stellen der Gammablitze weit entfernte Galaxien und konnte so direkt nachweisen, dass Gammablitze extragalaktische Quellen haben.
Die Dauer von Gammablitzen beträgt wenige Sekunden bis maximal einige Minuten; zwei bekannte Ausnahmen sind GRB 060218 mit 33 Minuten und GRB 110328A (Sw 1644+57), der eine Rekorddauer von mehreren Wochen erreichte.[2]
GRBs lassen sich nach ihrer Dauer in zwei verschiedene Klassen einteilen. Die langen GRB dauern im Mittel etwa 35 Sekunden, Ultralange GRB mehr als 10.000 Sekunden. In einigen sehr langen GRB konnte man zeitgleich zum Gammablitz eine Kernkollaps-Supernova beobachten.
Im Unterschied dazu dauern kurze GRB weniger als zwei Sekunden. Auch das optische Nachleuchten dieser GRB ist wesentlich kürzer als das der langen GRB. Es konnte 2005 erstmals beobachtet werden. Kurze GRB haben normalerweise härtere Röntgenspektren als die langen. Etwa 30 % aller kurzen GRB folgt ein bis zu 100 Sekunden andauernder, stark veränderlicher Röntgenausbruch. Dieses unterschiedliche Verhalten innerhalb der Klasse der kurzen GRB lässt auf mehr als einen Entstehungsmechanismus schließen.
Ungefähr 15 Prozent aller Gamma Ray Bursts zeigen einen oder mehrere Vorläufer (precursors). Dabei handelt es sich um bis zu 100 Sekunden vor dem Hauptausbruch auftretende Gammastrahlung mit etwa 100-mal schwächerer Leuchtkraft. Vor der Haupteruption folgt meistens eine Phase, in der keine Strahlung nachgewiesen wird. Das Spektrum entspricht dem des Hauptausbruchs. Wenn mehrere Precursors beobachtet werden, liegen zwischen ihnen jeweils Ruhephasen von rund 10 Sekunden[3].
Die Strahlung zeigt ein kontinuierliches Spektrum mit Photonenenergien von weniger als 1 keV bis in den MeV-Bereich. Die meisten Spektren lassen sich durch eine Unterteilung in zwei Bereiche beschreiben. Im Bereich niedriger Energien bis zu einigen hundert keV (je nach GRB) nimmt mit zunehmender Energie der Photonen ihre Häufigkeit exponentiell ab. Im Bereich hoher Energien folgt die weitere Abnahme der Häufigkeiten einer Hyperbel. Wegen der weit ausgedehnten Skala der vorkommenden Energien unterscheiden sich die Häufigkeiten für die einzelnen Kanäle um viele Zehnerpotenzen. Daher ist eine lineare Darstellung des gesamten Spektrums in einem Diagramm nicht sinnvoll. Besser wird eine Leistungsgröße (Häufigkeit · Energie²) über der Energie doppelt logarithmisch aufgetragen. In dieser Darstellung zeigt sich für die meisten Spektren ein Maximum, nämlich bei derjenigen Photonenenergie, bei der die größte Leistung empfangen wurde. Diese Peak-Energie ist charakteristisch für den Gammablitz und liegt im Mittel der von BATSE untersuchten Gammablitze bei 250 keV.[4]
Das genaue phänomenologische Modell für das kontinuierliche Spektrum ist:[4]
Für und ergibt sich:
Dem Kontinuum sind schwache einzelne Spektrallinien überlagert, die allerdings stark dopplerverbreitert sind. Solche Linien auf dem kontinuierlichen Spektrum geben Einblick in die physikalischen Prozesse der Entstehung der Strahlung. Die starke Blauverschiebung bedeutet, dass sich das Explosionsmaterial mit hochrelativistischer Geschwindigkeit auf den Beobachter zubewegt. Die Dopplerverbreiterung ergibt sich aus der starken thermischen Bewegung aufgrund der hohen Temperatur des emittierenden Materials.
Das Spektrum ist während der Dauer des GRB nicht konstant, lässt sich aber zu allen Zeiten mit den gleichen oben genannten Funktionen annähern, nur die Parameter ändern sich zeitlich. Im Allgemeinen nimmt die Peak-Energie und damit die Härte des Spektrums während der Dauer des Gammablitzes ab, kann aber in seinem Verlauf bei Intensitätsschüben auch wieder kurz ansteigen.[6]
Auf Grund der kurzen Dauer des Gammablitzes kann das Gebiet, aus dem er ausgesendet wurde, nicht sehr groß sein. Der Durchmesser eines langsamen Objekts (mit weniger als 10 % der Lichtgeschwindigkeit) ist maximal gleich der kürzesten Helligkeitsänderung multipliziert mit der Lichtgeschwindigkeit; wegen relativistischer Effekte kann dieser Bereich etwas größer sein, ist aber immer noch recht klein. Spezielle Supernovaexplosionen, so genannte Hypernovae, sind daher eine mögliche Ursache für Gammablitze. Eine weitere mögliche Ursache für einen Gammablitz sind verschmelzende Neutronensterne.
Würde ein Gammablitz gleichmäßig in alle Richtungen abstrahlen, so hätte beispielsweise der Gammablitz GRB-990123 vom Januar 1999 (siehe obiges Bild) eine Strahlungsleistung von über 1045 Watt haben müssen, entsprechend der 2,5·1018-fachen Sonnenleuchtkraft, also 2,5 Trillionen Sonnen. Selbst Quasare kommen nur auf 1040 Watt.
Man nimmt daher an, dass ein Gammablitz nur in zwei engen, entgegengesetzten, kegelförmigen Bereichen mit einem Öffnungswinkel von wenigen Grad ausgesandt wird, die Strahlung also wie bei einem Leuchtturm fokussiert ist. Dadurch verringert sich die erforderliche Strahlungsleistung, um die beobachtete Helligkeit zu erklären, um ca. 3 Zehnerpotenzen, ist jedoch immer noch extrem groß. Zudem lässt sich durch die Fokussierung die Heftigkeit der Energieausbrüche erklären, ohne dass grundlegende physikalische Prinzipien verletzt würden. Der Gammablitz schließlich entsteht durch Stoßwellen in dem sich mit nahezu Lichtgeschwindigkeit ausbreitenden Gas der Supernovaexplosion. Die gesamte freiwerdende Energiemenge ist ungefähr in derselben Größenordnung wie von einer Supernova, jedoch strahlt die Supernova den Großteil ihrer Energie in Form von Neutrinos ab. Modellrechnungen zeigen, dass der beobachtete Helligkeitsverlauf der Gammablitze gut zu den Annahmen passt. Die Beobachtungen von GRB 080319B (siehe oben) ergeben, dass innerhalb der kegelförmigen Bereiche je noch ein kleinerer, noch ‚spitzkegeligerer‘ Jet existiert, der praktisch keine Durchmesseraufweitung mehr aufzeigt. Bei dem erwähnten Gammablitz befand sich die Erde genau innerhalb dieses ‚Laser-Strahls‘, was ein seltenes Ereignis darstellen sollte: Möglicherweise existiert bei jedem Gammablitz ein solcher zweiter Strahl, der aber nur beobachtet werden kann, wenn sich die Erde bzw. das Messgerät innerhalb dieses engen Strahlungskegels befindet. Bisher war das nur bei GRB 080319B der Fall.
Den Unterschied zu einer normalen Supernova erklärt man sich dadurch, dass bei besonders massereichen Sternen von über 20 Sonnenmassen eine Hypernova entsteht, deren zentraler Kernbereich zu einem rasch rotierenden Schwarzen Loch kollabiert. Das umgebende Gas läuft in einer Akkretionsscheibe um das Schwarze Loch und heizt sich beim Einfall sehr stark auf, Gasjets werden dann senkrecht zur Scheibenebene ausgestoßen und erzeugen die Gammablitze. Die Verschmelzung zweier Neutronensterne führt zu ähnlichen Resultaten.
Auch wenn schon lange ein Zusammenhang mit Supernovae vermutet wurde, war es doch erst 1997 möglich, einen Gammastrahlenausbruch direkt in Verbindung mit solch einem Sternentod zu bringen. Der Satellit High Energy Transient Explorer (HETE) beobachtete einen Gammastrahlenausbruch, als dessen Quelle sich der Kollaps eines Sterns mit 15-facher Sonnenmasse herausstellte.
Zu einem Teil der GRB mit einem langen Ausbruch konnte eine Supernova am selben Ort gefunden werden, die einige Stunden später aufleuchtete. Es handelt sich bei allen bestätigten Übereinstimmungen um eine nackte Kernkollaps-Supernova vom Typ Ic-b1. Diese entwickelten Sterne haben in ihrem Kern alle Elemente bis zum Eisen produziert und wenigstens die wasserstoffreichen Atmosphärenschichten durch Sternwind oder Interaktion in einem Doppelsternsystem verloren. Allerdings ist nur bei einem sehr geringen Anteil der Supernovae vom Typ Ic-b1 ein entsprechender Gammablitz gefunden worden. Das erklärt sich erstens durch den schmalen Kegel, in dem die Gammastrahlung abgestrahlt wird und nur bei einem kleinen Teil aller Supernovae zufällig in Richtung Erde ausgerichtet ist; zweitens reicht die Energie des Gammastrahlenausbruchs nicht immer aus, um die Restatmosphäre des Sterns zu durchdringen. Auf der anderen Seite sind nicht zu allen langen Gammablitzen Supernovae gefunden worden. Es dürfte daher noch weitere Entstehungskanäle für lange Gammastrahlenausbrüche geben.[7]
Mit der Entstehung langer Gammablitze werden folgende Ereignisse in Verbindung gebracht:
Kurzzeitig glaubten Astronomen, dass Magnetare (instabile junge Neutronensterne, die von einem extrem starken Magnetfeld umgeben sind) die Quelle besonders kurzer Gammablitze sein könnten. Doch die Magnetar-Theorie ist wahrscheinlich falsch, wie weitere Beobachtungen im Jahr 2005 ergaben. So konnte die Sonde HETE-2, die bereits seit Oktober 2000 im All ist, am 9. Juli 2005 einen Gammablitz von nur 70 Millisekunden Dauer auffangen. In höchster Eile richteten Wissenschaftler die Weltraumteleskope Hubble und Chandra sowie das dänische 1,5-Meter-Teleskop im chilenischen La Silla auf die Explosion aus. Auf diese Weise entstanden die ersten Bilder vom Nachglühen eines kurzen Gammablitzes im Bereich des optischen Lichts.
Für die Entstehung kurzer Gammablitze werden drei Szenarien diskutiert:[10][11]
Die dem Ausbruch folgende Emission von Röntgenstrahlung könnte durch den Verlust von Rotationsenergie eines gerade entstandenen Magnetars entstehen.
Am 17. August 2017 wurde erstmals ein Gravitationswellen-Signal (GW170817) aus der Verschmelzung zweier Neutronensterne beobachtet.[13] Gleichzeitig wurde es mit einem kurzen Gammablitz (GRB 170817A)[14] in Verbindung gebracht und konnte im optischen und anderen elektromagnetischen Wellenbereichen beobachtet werden. Das war der erste Nachweis eines vermutlichen Zusammenhangs von kurzen Gammablitzen und der Kollision zweier Neutronensterne.
Mit Hilfe einer Computersimulation haben Wissenschaftler am Max-Planck-Institut für Gravitationsphysik die Verschmelzung zweier Neutronensterne zu einem Schwarzen Loch genauer untersucht und konnten erstmals zeigen, dass sich durch Reorganisation des Magnetfeldes bei der Verschmelzung eine Jet-förmige Struktur entlang der Rotationsachse bildet, in dessen Inneren Gammablitze entstehen können. Für die Simulation hatten die Wissenschaftler die Einsteinschen Feldgleichungen und die Gleichungen der Magnetohydrodynamik für dieses Szenario gelöst.[15]
Der unmittelbare, sofortige Schaden durch einen Gammablitz, der direkt auf die Erde gerichtet ist, wäre nach den Ergebnissen einer Studie begrenzt,[16] da Gammablitze meist nur kurz sind und ein großer Teil der Gammastrahlen den Erdboden nicht erreicht. Gammastrahlung wird in der Atmosphäre absorbiert, wobei unter anderem Stickoxid entsteht. Auch wäre die vom Gammablitz abgewandte Erdseite von dem Gammablitz nicht sofort betroffen, da die Gammastrahlung den Planeten nicht durchdringen kann. Ein ausreichend naher Gammablitz bildet aber so viel Stickoxid in der Atmosphäre, dass die Ozonschicht schwer geschädigt würde. Das könnte auch die unberührte Erdseite stark beeinflussen.
Eventuell ist sogar eines der größten Massenaussterben der Erdgeschichte durch einen Gammablitz in der Milchstraße ausgelöst worden. Beispielsweise wird über ein Ereignis vor 443 Millionen Jahren (Ende des Ordoviziums) spekuliert. Infolge eines Gammablitzes wäre die UV-Strahlung der Sonne nach Zerstörung der Ozonschicht ungehindert in die obersten Wasserschichten der Urozeane eingedrungen. Dort könnten Organismen, die nahe der Wasseroberfläche lebten, abgetötet worden sein (Landlebewesen gab es zu dieser Zeit noch nicht). Als Indiz für ein solches Szenario wird angeführt, dass am Ende des Ordoviziums viele nahe der Wasseroberfläche lebende Trilobiten ausstarben.[17][18]
Eine Gruppe von Wissenschaftlern an der Ohio State University wurde beauftragt, herauszufinden, welche Konsequenzen der Treffer eines in der Nähe (ca. 500 Lichtjahre) entstehenden Gammablitzes auf die Erde hätte.[16] Die Untersuchung sollte auch helfen, Massenaussterben auf der Erde zu klären und die Wahrscheinlichkeit von extraterrestrischem Leben einschätzen zu können. Im Ergebnis vermuten Wissenschaftler, dass ein Gammablitz, der in der Nähe unseres Sonnensystems entsteht und die Erde trifft, ein Massensterben auf dem gesamten Planeten auslösen könnte. Die zu erwartende schwere Schädigung der Ozonschicht würde die globale Nahrungsmittelversorgung zusammenbrechen lassen sowie zu langanhaltenden Veränderungen des Klimas und der Atmosphäre führen. Das würde ein Massenaussterben auf der Erde bewirken.
Der Schaden durch einen Gammablitz wäre deutlich höher als der durch eine Supernova, die sich in gleicher Entfernung ereignet. Gammablitze jenseits von 3.000 Lichtjahren stellen nach der Studie keine Gefahr dar.
Gammablitze von besonderer historischer oder wissenschaftlicher Bedeutung: