Eine lineare Abbildung (auch lineare Transformation oder Vektorraumhomomorphismus genannt) ist in der linearen Algebra ein wichtiger Typ von Abbildung zwischen zwei Vektorräumen über demselben Körper. Bei einer linearen Abbildung ist es unerheblich, ob man zwei Vektoren zuerst addiert und dann deren Summe abbildet oder zuerst die Vektoren abbildet und dann die Summe der Bilder bildet. Gleiches gilt für die Multiplikation mit einem Skalar aus dem Grundkörper.
Das abgebildete Beispiel einer Spiegelung an der Y-Achse verdeutlicht dies. Der Vektor ist die Summe der Vektoren und und sein Bild ist der Vektor . Man erhält aber auch, wenn man die Bilder und der Vektoren und addiert.
Man sagt dann, dass eine lineare Abbildung mit den Verknüpfungen Vektoraddition und skalarer Multiplikation verträglich ist. Es handelt sich somit bei der linearen Abbildung um einen Homomorphismus (strukturerhaltende Abbildung) zwischen Vektorräumen.
In der Funktionalanalysis, bei der Betrachtung unendlichdimensionaler Vektorräume, die eine Topologie tragen, spricht man meist von linearen Operatoren statt von linearen Abbildungen. Formal gesehen sind die Begriffe gleichbedeutend. Bei unendlichdimensionalen Vektorräumen ist jedoch die Frage der Stetigkeit bedeutsam, während Stetigkeit immer vorliegt bei linearen Abbildungen zwischen endlichdimensionalen reellen Vektorräumen (jeweils mit der euklidischen Norm) oder allgemeiner zwischen endlichdimensionalen hausdorffschentopologischen Vektorräumen.
Die zwei obigen Bedingungen kann man auch zusammenfassen:
Für geht diese in die Bedingung für die Homogenität und für in diejenige für die Additivität über. Eine weitere, gleichwertige Bedingung ist die Forderung, dass der Graph der Abbildung ein Untervektorraum der Summe der Vektorräume und ist.
Eine Abbildung ist linear, wenn sie verträglich mit der Vektorraumstruktur ist. Sprich: Lineare Abbildungen vertragen sich sowohl mit der zugrundeliegenden Addition als auch mit der skalaren Multiplikation des Definitions- und Wertebereichs. Die Verträglichkeit mit der Addition bedeutet, dass die lineare Abbildung Summen erhält. Wenn wir im Definitionsbereich eine Summe mit haben, so gilt und damit bleibt diese Summe nach der Abbildung im Wertebereich erhalten:
Diese Implikation kann verkürzt werden, indem die Prämisse in eingesetzt wird. So erhält man die Forderung . Analog kann die Verträglichkeit mit der skalaren Multiplikation beschrieben werden. Diese ist erfüllt, wenn aus dem Zusammenhang mit dem Skalar und im Definitionsbereich folgt, dass auch im Wertebereich gilt:
Nach Einsetzen der Prämisse in die Konklusion erhält man die Forderung .
Visualisierung der Verträglichkeit mit der Vektoraddition: Jedes durch , und gegebene Additionsdreieck bleibt durch die lineare Abbildung erhalten. Auch , und bildet ein Additionsdreieck und es gilt .
Bei Abbildungen, die sich nicht mit der Addition vertragen, gibt es Vektoren , und , sodass , und kein Additionsdreieck bilden, weil ist. Eine solche Abbildung ist nicht linear.
Visualisierung der Verträglichkeit mit der skalaren Multiplikation: Jede Skalierung bleibt durch eine lineare Abbildung erhalten und es gilt .
Wenn eine Abbildung nicht verträglich ist mit der skalaren Multiplikation, so gibt es einen Skalar und einen Vektor , so dass die Skalierung nicht auf die Skalierung abgebildet wird. Eine solche Abbildung ist nicht linear.
Es sei und . Dann wird für jede -Matrix mit Hilfe der Matrizenmultiplikation eine lineare Abbildung durch
definiert. Jede lineare Abbildung von nach kann so dargestellt werden.
Ist ein offenes Intervall, der -Vektorraum der stetig differenzierbaren Funktionen auf und der -Vektorraum der stetigen Funktionen auf , so ist die Abbildung , , die jeder Funktion ihre Ableitung zuordnet, linear. Entsprechendes gilt für andere lineare Differentialoperatoren.
Die Streckung ist eine lineare Abbildung. Bei dieser Abbildung wird die Komponente um den Faktor gestreckt.
Diese Abbildung ist additiv: Es ist egal, ob man erst Vektoren addiert und dann abbildet oder ob man erst die Vektoren abbildet und dann addiert: .
Diese Abbildung ist homogen: Es ist egal, ob man erst einen Vektor skaliert und dann abbildet oder ob man den Vektor erst abbildet und dann skaliert: .
Zwei bei der Betrachtung linearer Abbildungen wichtige Mengen sind das Bild und der Kern einer linearen Abbildung .
Das Bild der Abbildung ist die Menge der Bildvektoren unter , also die Menge aller mit aus . Die Bildmenge wird daher auch durch notiert. Das Bild ist ein Untervektorraum von .
Der Kern der Abbildung ist die Menge der Vektoren aus , die durch auf den Nullvektor von abgebildet werden. Er ist ein Untervektorraum von . Die Abbildung ist genau dann injektiv, wenn der Kern nur den Nullvektor enthält.
Eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen ist durch die Bilder der Vektoren einer Basis eindeutig bestimmt. Bilden die Vektoren eine Basis des Vektorraums und sind Vektoren in , so gibt es genau eine lineare Abbildung , die auf , auf , …, auf abbildet. Ist ein beliebiger Vektor aus , so lässt er sich eindeutig als Linearkombination der Basisvektoren darstellen:
Hierbei sind die Koordinaten des Vektors bezüglich der Basis . Sein Bild ist gegeben durch
Ordnet man jedem Element einer Basis von einen Vektor aus beliebig zu, so kann man mit obiger Formel diese Zuordnung eindeutig zu einer linearen Abbildung fortsetzen.
Stellt man die Bildvektoren bezüglich einer Basis von dar, so führt dies zur Matrixdarstellung der linearen Abbildung.
Sind und endlichdimensional, , , und sind Basen von und von gegeben, so kann jede lineare Abbildung durch eine -Matrix dargestellt werden.
Diese erhält man wie folgt:
Für jeden Basisvektor aus lässt sich der Bildvektor als Linearkombination der Basisvektoren darstellen:
Die , , bilden die Einträge der Matrix :
In der -ten Spalte stehen also die Koordinaten von bezüglich der Basis .
Mit Hilfe dieser Matrix kann man den Bildvektor jedes Vektors
berechnen:
Für die Koordinaten von bezüglich gilt also
.
Dies kann man mit Hilfe der Matrizenmultiplikation ausdrücken:
Die Matrix heißt Abbildungsmatrix oder Darstellungsmatrix von . Andere Schreibweisen für sind und .
Bild und Kern stehen über den Dimensionssatz in Beziehung. Dieser sagt aus, dass die Dimension von gleich der Summe der Dimensionen des Bildes und des Kerns ist:
Lineare Abbildungen zwischen unendlichdimensionalen Vektorräumen
Insbesondere in der Funktionalanalysis betrachtet man lineare Abbildungen zwischen unendlichdimensionalen Vektorräumen. In diesem Kontext nennt man die linearen Abbildungen meist lineare Operatoren. Die betrachteten Vektorräume tragen meist noch die zusätzliche Struktur eines normierten vollständigen Vektorraums. Solche Vektorräume heißen Banachräume. Im Gegensatz zum endlichdimensionalen Fall reicht es nicht, lineare Operatoren nur auf einer Basis zu untersuchen. Nach dem baireschen Kategoriensatz hat nämlich eine Basis eines unendlichdimensionalen Banachraums überabzählbar viele Elemente und die Existenz einer solchen Basis lässt sich nicht konstruktiv begründen, das heißt nur unter Verwendung des Auswahlaxioms. Man verwendet daher einen anderen Basisbegriff, etwa Orthonormalbasen oder allgemeiner Schauderbasen. Damit können gewisse Operatoren wie zum Beispiel Hilbert-Schmidt-Operatoren mithilfe „unendlich großer Matrizen“ dargestellt werden, wobei dann auch unendliche Linearkombinationen zugelassen werden müssen.
Ein Monomorphismus zwischen Vektorräumen ist eine lineare Abbildung , die injektiv ist. Dies trifft genau dann zu, wenn die Spaltenvektoren der Darstellungsmatrix linear unabhängig sind.
Epimorphismus
Ein Epimorphismus zwischen Vektorräumen ist eine lineare Abbildung , die surjektiv ist. Das ist genau dann der Fall, wenn der Rang der Darstellungsmatrix gleich der Dimension von ist.
Isomorphismus
Ein Isomorphismus zwischen Vektorräumen ist eine lineare Abbildung , die bijektiv ist. Das ist genau der Fall, wenn die Darstellungsmatrix regulär ist. Die beiden Räume und bezeichnet man dann als isomorph.
Endomorphismus
Ein Endomorphismus zwischen Vektorräumen ist eine lineare Abbildung, bei der die Räume und gleich sind: . Die Darstellungsmatrix dieser Abbildung ist eine quadratische Matrix.
Automorphismus
Ein Automorphismus zwischen Vektorräumen ist eine bijektive lineare Abbildung, bei der die Räume und gleich sind. Er ist also sowohl ein Isomorphismus als auch ein Endomorphismus. Die Darstellungsmatrix dieser Abbildung ist eine reguläre Matrix.
Die Menge der linearen Abbildungen von einem -Vektorraum in einen -Vektorraum -manchmal auch als geschrieben- ist ein Vektorraum über , genauer: ein Untervektorraum des -Vektorraums aller Abbildungen von nach .
Das bedeutet, dass die Summe zweier linearer Abbildungen und , komponentenweise definiert durch
wieder eine lineare Abbildung ist und dass
das Produkt
einer linearen Abbildung mit einem Skalar auch wieder eine lineare Abbildung ist.
Hat die Dimension und die Dimension , und sind in eine Basis und in eine Basis gegeben, so ist die Abbildung
in den Matrizenraum ein Isomorphismus. Der Vektorraum hat also die Dimension .
Betrachtet man die Menge der linearen Selbstabbildungen eines Vektorraums, also den Spezialfall , so bilden diese nicht nur einen Vektorraum, sondern mit der Verkettung von Abbildungen als Multiplikation eine assoziative Algebra, die kurz mit bezeichnet wird.
Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 6., durchgesehene und ergänzte Auflage. Vieweg Braunschweig u. a. 2003, ISBN 3-528-56508-X, S. 124–143.
Günter Gramlich: Lineare Algebra. Eine Einführung für Ingenieure. Fachbuchverlag Leipzig im Carl-Hanser-Verlag, München 2003, ISBN 3-446-22122-0.
Detlef Wille: Repetitorium der Linearen Algebra. Band 1. 4. Auflage, Nachdruck. Binomi, Springe 2003, ISBN 3-923923-40-6.