Lévyprozesse, benannt nach dem französischen Mathematiker Paul Lévy (1886–1971), sind stochastische Prozesse mit stationären, unabhängigen Zuwächsen. Sie beschreiben die zeitliche Entwicklung von Größen, die zwar zufälligen, aber über die Zeit (in Verteilung) gleich bleibenden und voneinander unabhängigen Einflüssen ausgesetzt sind. Viele wichtige Prozesse, wie der Wienerprozess oder der Poissonprozess, sind Lévyprozesse.
Sei , ein stochastischer Prozess über der Indexmenge (meist oder ). Man sagt, habe unabhängige Zuwächse, wenn für alle die Zufallsvariablen (die Zuwächse von ) unabhängig sind.
Ist die Verteilung der Zuwächse über gleich langen Zeitintervallen dieselbe, d. h. gilt
Als Lévyprozesse bezeichnet man genau jene Prozesse , die unabhängige und stationäre Zuwächse aufweisen.
Häufig wird zusätzlich noch verlangt, dass (fast sicher) gilt.
Ist ein allgemeiner Lévyprozess, dann wird durch ein Lévyprozess mit definiert. Im Folgenden sei stets vorausgesetzt.
Gilt speziell , so lässt sich die Klasse der Lévyprozesse sehr einfach charakterisieren: Es gibt nämlich für alle solche Prozesse eine Darstellung
wobei unabhängige und identisch verteilte Zufallsvariablen sind. Andererseits ist für jede Folge von unabhängigen Zufallsvariablen , die alle die gleiche beliebig vorgegebene Verteilung haben, durch und ein Lévyprozess X definiert. Im zeitdiskreten Fall ist ein Lévyprozess also im Prinzip nichts anderes als eine Irrfahrt mit beliebiger, aber gleich bleibender Sprungverteilung. Das einfachste Beispiel für einen zeitdiskreten Lévyprozess ist demnach auch die symmetrische einfache Irrfahrt, bei dem symmetrisch bernoulliverteilt ist. Hier bewegt sich der Prozess X, startend bei , in jedem Schritt mit Wahrscheinlichkeit ½ um Eins nach oben, andernfalls um Eins nach unten.
Ein Gamma-Prozess ist ein Lévyprozess, bei dem die Zuwächse unabhängig und gammaverteilt sind. Dies ist möglich, da die Gammaverteilung unendlich teilbar ist. Der Prozess ist fast sicher monoton wachsend, er ist also ein Subordinator. Der Prozess hat unendliche Aktivität und keine Diffusionskomponente. Die beiden zufälligen Pfade sind von Trajektorien von Gamma-Prozessen, mit den shape-Parametern 0.7 (rot) und 0.25 (blau)
Im Fall ist die Charakterisierung nicht mehr so leicht: So gibt es zum Beispiel keinen zeitstetigen Lévyprozess, bei dem wie oben bernoulliverteilt ist.
Jedoch sind zeitstetige Lévyprozesse eng verwandt mit dem Begriff der unendlichen Teilbarkeit: Ist nämlich ein Lévyprozess, so ist unendlich teilbar. Andererseits legt eine unendlich teilbare Zufallsvariable bereits die Verteilung des gesamten Lévyprozesses eindeutig fest.
Jedem Lévyprozess entspricht also eine unendlich teilbare Verteilungsfunktion und umgekehrt.
Drei Trajektorien von Lévyprozessen vom Typ Variance-Gamma
Wichtige Beispiele für zeitstetige Lévyprozesse sind der Wienerprozess (auch Brownsche Bewegung genannt), bei dem die unendlich teilbare Verteilung von eine Normalverteilung ist, oder der Poissonprozess, bei dem poissonverteilt ist. Doch auch viele andere Verteilungen, beispielsweise die Gammaverteilung oder die Cauchyverteilung, können zur Konstruktion von Lévyprozessen herangezogen werden. Neben dem deterministischen Prozess ist der Wienerprozess mit konstanter Drift und konstanter Volatilität der einzige stetige Lévyprozess, d. h. aus der Stetigkeit eines Lévyprozesses folgt schon die Normalverteilung seiner Zuwächse. Es existiert jedoch beispielsweise kein Lévyprozess mit gleichverteilten Zuständen.
Wichtig ist auch der Begriff der endlichen und unendlichenAktivität: Gibt es in einem Intervall unendlich viele (und damit unendlich kleine) Sprünge oder nicht? Auskunft darüber gibt auch das Lévymaß.
Weiterhin sind Subordinatoren von Bedeutung, das sind Lévyprozesse mit fast sicher monoton wachsenden Pfaden. Ein Beispiel dafür ist der Gamma-Prozess. Die Differenz von zwei Gamma-Prozessen wird als variance-gamma-process bezeichnet.
Jeder Lévyprozess kann als eine Summe aus einer brownschen Bewegung, einem linearen Driftprozess und einem reinen Sprungprozess, welcher alle Sprünge des ursprünglichen Lévyprozesses beinhaltet, dargestellt werden. Diese Aussage ist bekannt als Lévy-Itō-Zerlegung.
Sei ein Lévyprozess in mit charakteristischem Tripel . Dann gibt es drei unabhängige Lévyprozesse, die alle auf dem gleichen Wahrscheinlichkeitsraum definiert sind, , , , so dass:
ist eine brownsche Bewegung mit Drift, also ein Lévyprozess mit charakteristischem Tripel ;
ist ein Lévyprozess mit charakteristischem Tripel (also ein Compound-Poissonprozess);